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ABSTRACT

A 13th order FIR filter for digital image processing is

implemented in microcode using the Am29203 bit-slice

evaluation board of ADVANCED MICRO DEVICES. To meet this

requirement, the filter is first implemented in Fortran.

Then the results of both implementations are used for timing

comparisons. Although non-optimal bit-slice devices are

used on the evaluation board, a time of 11 microseconds is

achieved, as compared to the 100 microseconds achieved in

the Fortran implementation. Theoretical estimates of 2.65

microseconds and 0.78 microseconds are obtained for high

speed Am2900 bit-slice devices and VITESSE'S Gallium

Arsenide bit-slice devices respectively. It is shown that,

although the initial learning period for bit-slice devices

is high, once learned, a skillful bit-slice designer can

implement a simple filter design in minimal time with

significant results in time savings.

A brief discussion of bit-slice techniques is presented

and an argument is proposed as to whether the bit-slice is a

methodology or a device. The most recent commercial

introduction of Gallium Arsenide devices is included in the

discussion.

In addition to the implementation of the filter, its

characteristics as well as its equation representations are
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presented. A discussion about noise and quantization

effects using this digital filter is also presented.

Finally, two appendices are included. The first

appendix presents the use of the commercial software

SMARTCOM II with the IBM PC to emulate the user terminal for

the monitor system of the Am29203 evaluation board. The

second appendix presents a detailed look at the bit-slice

microcode used to implement the filter.
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I. INTRODUCTION

A. GENERAL BACKGROUND

The bit-slice method of computer processor organization

originated in the, 1970 's as an efficient partitioning of the

arithmetic and logic unit (ALU) circuitry into convenient

LSI components. These components (the "bit-slices") are

then applied in a parallel data-path organization to

construct processors having any desired data-path width

(constrained of course to be a multiple of the basic "bit-

slice" size) . Since the introduction of bit-slice

components, variations and extensions of the original

methodology have appeared. Generally the methods involved

reflect the following characteristics:

1) circuit technology reflecting an emphasis of speed
(e.g. , bipolar or the most recent introduction of
Gallium Arsenide devices [Ref. 1]) rather than
density (e.g. , conventional MOS microprocessors)

,

2) use of microprogramming to implement either standard
or custom instructions (usually facilitated by a
separate, replaceable ROM control store) , and

3) related to 2) above, capability of realizing
variable instruction set computers.

As the variety and scope of applications of bit-slice

devices has evolved, it has become common to refer to the

related methodology as simply "bit-slice". Therefore, in

this thesis, wherever reference is made to the unqualified
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term bit-slice, it is this general methodology which is

referred to.

Of interest in military applications is the use of bit-

slice in the redesign of older equipment to emulate existing

instruction sets while increasing speed and reliability.

Generally., however, the main use of bit-slice is for speed

and it has emerged as the dominant technology in high-

performance graphics. Because of the complexity of bit-

slice microprogramming, much time is necessarily spent

toward researching and developing the skills needed in

implementing algorithms using this approach. Chapter II

introduces the method of bit-slice and its primary

components and additionally offers some examples of the

recent advances made in this area.

The main thrust of this study was to implement an image

processing FIR filter using the methodology of bit-slice.

Image processing has a wide range of military applications

and the filters used in image processing are just a small

part of a very broad area of research. The filter, as

presented thoroughly in Chapter III, is a color band pass

filter having a carrier frequency of 3.58 MHz and is defined

as follows [Ref. 2]:

H(Z) = (1-Z" 1 )

2 (1-Z" 2
)
2 (1+Z" 3

) (1+Z~4 )

The primary goal of course was to minimize the time used to

run this filter through standard and bit-slice methods.

10
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Chapter III presents a standard approach using Fortran

programming. Necessarily, a secondary emphasis was placed

on investigating the advantages of using FIR filters and a

special emphasis was placed on the quantization effects

produced using these digital filters.

For the bit-slice implementation, the AM29203 evaluation

board will be used. This tool allows the user to develop and

analyze microprograms through the use of a monitor using a

screen-oriented terminal. A description of this tool as

well as the implementation of the FIR filter using it is

presented in Chapter IV. The AM292 03 evaluation board posed

some limitations due to the fact that high speed was not a

design objective of the evaluation board. The onboard

memory is slow and the available look-ahead carry generator

for the ALU was not used. However, the theoretical speed

which can be achieved is presented along with the actual

speed achieved and is compared to that of the Fortran

implementation. Finally, the conclusions of this study are

presented in Chapter V.

B. METHOD OF IMPLEMENTATION DEVELOPMENT

Again, the primary goal was to minimize the time used by

the filter using the bit-slice implementation. The proposed

method for achieving this goal was as follows:

1) Implement the filter in floating point using Fortran
programming methods.

2) Emulate implementation of the filter in fixed point
using Fortran programming methods.

11
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3) Implement the filter using 68000 assembly language.

4) Implement the filter using bit-slice methods.

The third step, although looked at, was found to be

unnecessary. However, if additional time had been

available, it would have given a more interesting comparison

between the speed of the bit-slice implementation as

compared to other methods. Using the method of approach as

stated above, a better understanding of the algorithm was

achieved, a logical progression of development occurred, and

comparisons in speed of implementation between Fortran and

bit-slice methods then became available.

C. BENEFIT OF STUDY

This study proved to be of great personal benefit in

bringing together and solidifying many areas of study

learned while at the Naval Postgraduate School. A better

understanding was achieved in the areas of filter design and

its associated algorithms and limitations; Fortran, assembly

and micro level programming and their interrelationships

were better understood; and finally, a better understanding

was achieved in the application of commercially available

hardware and software. This personal benefit will hopefully

result in some applied benefit to the Navy.

For Dr. C. H. Lee's interests in this area of image

processing, this study achieved two primary goals. First,

the FIR filter was successfully implemented using bit-slice

methodology. Secondly, the Am29203 evaluation board was

12
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successfully interfaced with an IBM personal computer to

allow for the creating and storing of files and for the easy

transfer of large amounts of data from stored files to the

evaluation board. This last item is documented in Chapter

IV and Appendix A.

13
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II. BIT-SLICE METHODOLOGY

A. INTRODUCTION

It has been shown that the bit-slice approach, using the

simplest bit-serial processor, provides the maximum

computational power. [Ref. 3] Commercially, however, when

we speak of bit-slice, we are generally referring to 4-bit

slice processors such as those offered by ADVANCED MICRO

DEVICES (AMD) . In this chapter, the bit-slice methodology

will be discussed and an example will be given using basic

bit-slice components to build a simple microprocessor. Then

a typical macro and micro instruction will be introduced

using this simple microprocessor. Finally, an argument as

to whether bit-slice is a methodology or a device will be

presented and discussed.

B. BIT-SLICE HISTORY AND BASIC CONCEPT

In 1974, Monolithic Memories Inc. introduced the first

bit-slice device, marketed as a microcontroller. Several

other companies joined in making bit-slice microprocessor

devices and by 1978, six companies were offering families of

devices classified as bit-slice microprogrammable processor

sets. Of these six, all were 4 bit-slice families with the

one exception of Intel which offered an unsuccessful 2-bit

family. [Ref. 4] During this period, AMD emerged as the

leader in bit-slice technology mainly due the design support

14
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the manufacturer offered by way of data sheets and

application notes. Because of the critical need for this

type of support in designing with bit-slice components due

to its design complexity, it is apparent why AMD bit-slice

emerged as and is still considered to be the standard of

bit-slice technology. Because of this standard, any further

references in this paper to bit-slice technology will assume

to mean the 4 bit-slice as offered by AMD unless otherwise

noted.

Two important concepts must be understood concerning

bit-slice methods. The basic underlying concept is that in

bit-slice, the data flow is sliced vertically into 4-bit CPU

slices and these slices are then joined together

horizontally to form microprocessors in increments of 4

bits. In the example which will be presented later in this

section, four 4 bit-slices are joined together to form a 16

bit microprocessor. Secondly, the bit-slice technology is

most generally hidden from the end user. This is because

bit-slice is a method for microprogramming machine-level

instructions or macro instructions. As shown in Figure 2.1,

levels A and B, the end user would normally be concerned

with the basic source code or at most, the assembly source

code of a computer. These codes would then be run through

a compiler or assembler program (software) to generate

machine level instructions. Figure 2.1, level C, then

illustrates how these machine-level instructions (software)

15
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are microprogrammed (firmware) to enable physical control

signals to the system (hardware) . Therefore, the bit-slice

design can be microprogrammed to support any instruction set

through the use of hardware and firmware. A good example of

how bit-slice is hidden from the end user was the

introduction in 1980 by Univac of its model 1100/60 computer

using bit-slice microprocessors in the central processing

unit. Despite the major change at the microprogramming

level, the outward appearance and instruction set was the

same as the previous 1100 series. [Ref. 6]

In bit-slice architecture, most of the architecture is

left to the user's definitions through the use of

interconnections and the microprogram. The advantages

offered with bit-slice design are fast complex design

capabilities relative to hardware, documentation is forced,

and upgrades are made easily by simply replacing PROMs. Bit

slice methods are typically used for machines with long

words, machines with special instruction sets, and with high

machine speeds. These last two categories make the bit-

slice particularly well suited for military application,

especially in the redesigning or upgrading of older

equipment. Also, because of its speed capabilities, the

bit-slice processor has emerged as the dominant technology

in high-performance graphics.

17
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C. SIMPLE PROCESSOR USING BASIC BIT-SLICE COMPONENTS

The most basic of processors is shown in Figure 2.2. It

consists of a data manipulation section, the ALU, and a

control section, otherwise known as the sequencer. This

basic processor will be used in this section as a framework

to build a simple processor using basic bit-slice

components. The Am29203 evaluation board will be used as an

example of a processor using these components and will be

discussed in further detail in Chapter IV. The memory

section and any peripherals will be ignored for the time

being.

Figure 2.3 shows a simplified view of the primary system

architecture of the AM29203 evaluation board divided into

the two basic sections. The ALU section of the evaluation

board consists of four 4-bit 29203 data manipulation (CPU)

slices to make up a 16 bit processor, and one 2904 status-

and-shift control unit which is used for shift register

linkage, status registers, and condition code testing. The

control section of the evaluation board is made up primarily

of the Am2910 and other associated hardware. The Am2910 is

a 12 bit sequencer with an instruction-decoding programmed

logic array provided on chip.

Looking at these basic components now in greater detail,

Figure 2.4 illustrates the general structure of the

manipulation unit, or the Am29203 in this specific example.

18
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As can be seen, it consists of the ALU, for performing the

required arithmetic or logic functions, general purpose

registers (RAM) , a multiplexer for selecting pertinent

general purpose registers and a RAM shifter for performing

data shifting. Of importance is the horizontal connection

points shown, specifically the carry and carry look-ahead

connections. Figure 2.5 illustrates how the horizontal

connections are used to connect four CPU slices in a ripple

carry mode to form a 16-bit ALU. This is the mode used on

the evaluation board due to board space constraints and due

to the fact that speed was not the primary consideration

when designing the evaluation board. Had the P and G

signals been connected, the processor would have been in the

carry look-ahead mode, an Am2902 look-ahead carry generator

would have been used, and the processor speed could

therefore have been increased. This will be an important

factor when looking at the time considerations later on.

Also shown in Figure 2.4 are specific status conditions such

as carry, sign, overflow and zero detect which are then used

by the Am2904. Figure 2.6 shows the connections used

between the Am29203 array and the Am2904 to allow the Am2904

to perform its status, testing and shifting functions. The

Am29 04 provides carry in from several sources which will

also be discussed later in greater detail.
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The Am2910 as mentioned earlier, is a 12-bit sequencer

used in the control section of the processor. Since it is a

12-bit sequencer, it is capable of addressing up to 4096

words of microcode, although the evaluation board only uses

10 of the 12 bits to address up to 1024 words. The function

of the Am2910 / put simply, is to control the sequence of

execution of microinstructions. The structure of the Am2910

is as shown in Figure 2.7. From this figure it can be seen

that the next address can come from four possible sources:

the microprogram counter (upc) , the LIFO stack (F) , the

register/counter (R) , or from direct input through a mapping

PROM. The onboard instruction PLA provides the internal

controls which correspond to the next-address control logic.

[Ref. 5]

Putting these Am2900 basic components together, the

architecture of a 16-bit processor is as shown in Figure

2.8. It should be noted in this figure that the processor

is connected in the carry look-ahead mode by interconnecting

the G and P connection points. The addition of the pipeline

register should also be noted. This register permits the

next microinstruction to be in the process of being fetched

while the current microinstruction is still executing,

thereby improving the speed of the microinstruction

sequencing.

25
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Figure 2.7 3m23l0 Architecture CRef . 7: p. 2.1211
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D. TYPICAL MACRO AND MICRO INSTRUCTIONS

As stated earlier, the machine level or macro

instructions would normally be generated by a basic compiler

or assembler program. A typical format for a macro

instruction is as shown in Figure 2.9. In the evaluation

board, the address mode is contained in the opcode, followed

by the source and destination. Suppose as an example, shown

in Figure 2.10, a macro instruction mnemonic of ADDRR (e.g.,

ADDRR Rl R2) [Ref. 7:p. 2.6] is given, with the opcode given

as A0 and the total macroinstruction being A012. This

opcode is then mapped through a mapping PROM to give the

micro-address, in this case micro-address 304, to the Am2910

microprogram sequencer.

The format of a microinstruction can vary in length from

32 to 256 bits in length (or more) depending on the amount

of hardware being controlled by the microinstruction and by

the presence or absence of overlaid fields. Microprogram

memory (word control store-WCS) is therefore made up of

relatively long words and most macroinstruction sets can be

implemented in microcode using a small microprogram memory

[Ref. 7:p. 2.6]. In the evaluation board, the instruction

set and monitor using the instruction set are easily

implemented with the 1024 WCS locations addressed by the

Am2910. A typical format for a microinstruction is given by

the 48-bit general microinstruction format for the

28
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OPCODE* ADDRESSING SOURCE DESTINATION

* address mode contained 1n opcode

Figure 2.9 Macroinstruction Format For Evaluation Board
CRef. 7: p. 3.51

Sample Macroinstrction : A012

flnemonic-ADDRR
AO-opcode to map to 304
1-storagB address in Rl
B-storagB address in RE

Figure 2.10 Sample riacroinstruction
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evaluation board as shown in Figure 2.11. The

microinstruction is broken down into fields that control the

various components. For the evaluation board, the

components controlled are the Am29203, Am2904 and the Am2910

which were discussed previously. The microinstruction has

several overlaid fields and even achieves what is referred

to as vertical programming through the use of an overlaid

command field and decoding PROM [Ref. 7:p. 3.10]. These

overlaid fields make microprogramming somewhat more

difficult but are used on less critical or seldom used

instructions to keep the microinstruction length shorter and

thereby decrease the cost of the memory (RAM) used. If

speed and not cost is the primary consideration, some of

these overlaid fields may have to be deleted which would

then increase the word length. The coding for each of the

microinstruction fields is explained in detail in the

evaluation board users guide [Ref. 7]. A summary of these

codes which are generally given in hexidecimal or octal form

for ease of coding are shown in Figure 2.12. From this

sheet for a simple 48-bit implementation, it is easily seen

why a long learning process is required for complex design

work using bit-slice components.

A specific example of a microinstruction is shown in

Figures 2.13 and 2.14. In this example, the operation to be

performed is R5=2* (R3+R4) . The codes for each field are

taken from the microinstruction coding format sheet, Figure
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OPERAND
REGISTER
AOORESSES

ALU
OPERA-
TIONS

CONDITION
CODES

SHIFT
&

CARRY

MICRO-
INSTRUCTION
BRANCH

NEXT
AOORESS
SELECT

Am29203 Am29203 Am2904 Am2904 Am2910 Am2910

Figure S.ll Ganeral Microinstruction Format
Board CReF. 7: p. 3.5D

For Evaluation
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BITS UALUE EXPLANATION

47-45 Q#4

44 B#0
43 BttO

4B-40 #0
3S-3G H#B

35-32 H#3
31-30 B#00
29-24 Q#20
23 B#l
22 B#0
21 B#l
20 B#0
19-16 H#2
15 B#l
14 X
13-12 B#XX
11-B H#3
7-4 H#4
3-0 H#A

Sources Ra & Rb specified by pipeline,
destination Re specified by IR
Enable Am29203
Enable Y output
Operand Sources from RAM
Destination to RAM with arithmetic
upshift
ADD, Rc-Ra + Rb
No carry in
ALU status to status registers
Don't latch micro status
Latch macro status
No command enable
Shift enable
Up shift, zero fill
Don't set breakpoint
Spare/Don't care
Don't care
Ra«R3
Rb-R4
Conditional Return

Resulting flicrouord: 80B3 10A2 F34A

Perform R5=2*CR3+R4D with sources specified by pipeline and
destination specified by IR

NOTE: B"Binary, Q-Octal , H-Hexadecimal

Figura 2.14 Sample Hicrcward With Field Descriptions
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2.12, and transferred to a blank coding sheet as

demonstrated in Figure 2.13. These codes are formed into a

12-element hexadecimal word which is then explained in

Figure 2.14. For instance, the octal code #4 is placed in

bits 47-45 which translates to the sources Ra and Rb being

specified by the pipeline and the destination being

specified by the instruction register (IR) . The pipeline

field, bits 11-4, then designates Ra and Rb to be registers

R3 and R4 respectively. The addition function is performed

by the ALU by specifying code hexadecimal #3 in the ALU

function field, bits 35-32, while the multiply by 2 is

implemented using the AM2904 shifter. The codes for the

shifting are placed in the Am2904 field and the micro status

is latched for possible overflow. The Am2910 instruction in

this case is a conditional return (based on the condition of

the status registers) and is performed by placing the

hexidecimal #A in the Am2910 instruction field, bits 3-0.

The resulting 12 element hexadecimal microword is as shown.

Typically, several of these microinstructions would be used

to implement a single macro instruction.

E. BIT-SLICE: METHODOLOGY OR DEVICE

Some people today believe that bit-slice is an outdated

device. The argument to be presented here is that a device

will be outdated as technology improves whereas a method

should be updated with advances in technology. Indeed, if

bit-slice were associated with a device, then bit-slice
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components, which were first conceived in 1974, should have

long been replaced by other devices and components,

considering the rapid developments in recent technology.

However, as technology has increased, bit-slice devices have

continued to improve and the demand for these components has

continued to grow. The following paragraphs will give some

specific examples of recent advances in the bit-slice

method .

Probably the most widely used application of bit-slice

is that of its use in high-performance graphics, due to the

high speed required to process large amounts of data. An

example of this is found hidden in Ramtek's graphic display

system which uses the Am2910 sequencer for its memory

control processor [Ref. 8]. Although VLSI technology

recently brought about powerful graphic controller chips,

this same technology has also improved the performance of

the bit-slice. While the VLSI chips have the advantage of

low cost for high volume and capabilities for a non-standard

bus, the advantages of the bit-slice over the VLSI chips

are:

- very high writing speeds,

- support of graphics standards, and

- programmability

.

This last item may be the distinct advantage in that it:

- permits graphics interface to be tuned to the particular
requirements of the application,

- can be programmed to emulate existing graphics devices,
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- can easily accommodate field changes or upgrades,

- specialized graphics operations may be microcoded,
moving intensive computational loads from the host
processor to the bit-slice , and

- easily adapts to changing graphics standards. [Ref. 9]

Texas Instruments introduced its STL 8-bit slice

microprocessor parts in 1985 and ECL 8-bit slice

microprocessor parts in 1986 using IMPACT (implanted

advanced composed technology) . The STL devices enabled STL

circuitry to match conventional ECL gate delays but at a

thirtieth the power while the ECL devices cut ECL gate delay

three to four times with conventional ECL power dissipation.

This architecture raised throughput significantly as the

processor can read an address, perform an ALU operation, and

shift and write all in the period of a single clock cycle.

[Ref. 10]

LSI Logic Corporation has made a recent introduction to

the semi-custom market using on-board bit-slice methods in

its design of structured arrays for microprogrammed systems.

These structured arrays can approach the density of full-

custom design circuits while retaining the quick design

turnaround time of gate arrays. The LSA devices combine up

to eight 2901s, 64K of ROM and 3900 gates of logic array on

a single chip. In a typical application of these devices it

was shown that a single chip could be used to replace 59

discrete 2900-family devices with a power consumption
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reduction from 4 W to 1.5 W and a 50% increase in processor

performance. [Ref. 11]

The final example given is the introduction by VITESSE

Electronic Corporation of 2900 Bit-Slice components offered

in Gallium Arsenide chips. These devices were the first

commercial devices to be offered in Gallium Arsenide. Using

enhancement-depletion mode chips to solve earlier depletion-

mode Gallium Arsenide design problems, VITESSE was able to

achieve low cost production of these devices using a

silicon-like fabrication process. With amazing gate delays

in the range of 125 picoseconds (1/8 of a nanosecond) ,

VITESSE easily achieved speeds of 13-ns for a 4-bit add and

a RAM 3.5-ns cycle time using a conservative design

approach. Compared to AMD's high speed ECL 2900 components,

the Gallium Arsenide components can run at speeds two to

three times faster. This example is probably the most

convincing argument that bit-slice is not an outdated device

but rather a methodology which has continued to improve with

technological advances. [Ref. 1]
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III. FORTRAN IMPLEMENTATION OF FIR FILTER

A. INTRODUCTION OF FIR DIGITAL FILTER

The filter chosen to be implemented in bit-slice was an

FIR (Finite-impulse-response) digital filter. This type of

filter offers many advantages. First, since it is FIR, it

can always be made to be stable and causal [Ref. 12].

Secondly, since it is digital, it possesses the inherent

advantage of immunity to noise and can be subjected to error

detecting codes, thereby offering a high reliability not

found in analog signals. As will be shown later in this

chapter, the accuracy of a digital signal can be increased

by increasing the number of bits used in the data stream and

software or hardware implementation. Further advantages of

the digital filter are that it can be easily duplicated for

precise processing, with fine tuning of analog components

replaced by data and program manipulation for consistent

output. With this precision, large amounts of data can be

processed with error detecting comparisons possible. The

digital signals used can be stored for long or short periods

of time without loss of accuracy. All of these advantages

come with the price of noise introduced due to quantization,

which will also be discussed in this chapter. Finally, the

cost and size of these highly reliable and accurate digital
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filters are greatly reduced from their expensive analog

counterparts. [Ref. 12]

The specific filter chosen to be implemented in bit-

slice was a clever video processor filter as shown in Figure

3.1, with an advertized bandpass color subcarrier frequency

of 3.58MHz and a sampling frequency four times the

subcarrier frequency, or 14.32MHz. This filter is shown

below in equation (z-domain) form:

H(Z) = (1-Z""2 ) (1+Z~4 ) (1+Z~ 3
) (1-Z -1 ) (1-Z" 1

) (1-Z"" 2 )

This filter has the distinct advantage of using only

coefficients of 1 in each of its six stages which allows the

filter to be designed using simple shift and add circuits.

Reference 2 neither states or derives how this 13th order

filter was reduced to its six stages nor does it explain why

the stages were ordered in the manner in which they were

ordered. Mathematically, it does not matter which order the

stages are put in. However, in the real environment, it may

be possible that this particular ordering of the stages

offers some advantage. These issues were looked at only

briefly as will be mentioned in the quantization section of

this chapter, however, a possible follow-on thesis may

explore these issues more fully.

B. "DSL" PROGRAM IMPLEMENTATION

Initially, to obtain a better understanding of this

filter, the six stages were multiplied together to obtain
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the rational polynomial form and factored or cascaded form

as shown below:

Rational Polynomial Form:

H(Z)=Z~ 13 (Z 13 -2Z 12 -Z 11+5Z 10 -2Z 9 -5Z 8+4Z 7+4Z 6 -5Z 5 -2Z 4+5Z 3 -

Z 2 -2Z+1)

Factored or Cascaded Form:

H(Z)=Z~ 13 (Z-l) 4 (Z+l) 3 (Z+.707+j.707) (Z-. 707+j . 707)
(Z+.707-J .707) (Z-.707-J .707) (Z-.5+J.866) (Z-.5-J.866)

These forms were used to obtain the required data entry to

utilize a student-designed graphing program entitled

"controls," on the IBM mainframe. Although this program

provided the expected magnitude frequency response, it

appeared to be too difficult to use to obtain desired signal

input/output graphs. Another program entitled "DSL"

(Dynamic Simulation Language) , as provided by IBM in their

language reference manual and installed on the mainframe,

was then used. This program provided a more versatile

plotting of the magnitude-frequency response of the filter

and not only allowed the filter to be entered in its

coefficient form but also in its original six-stage form as

well. The "DSL" program proved to be a very useful tool in

the way of a quick visual reference of signal input/output

to the filter and was used continuously throughout the

thesis development.
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First, "DSL" was used to obtain the magnitude-frequency

response as shown in Figure 3.2. The procedure and program

for obtaining this graph is shown in Figure 3.3. Indeed,

the frequency response for a bandpass filter is obtained as

expected. With "THETA from the graph equal to PI, the

following is found to be true:

With f=input frequency and Fs=sampling frequency

f=THETA*Fs/2

For Center Frequency of Passband:

f=. 575*14 . 32MHZ/2=4 . 10MHz

For Subcarrier Frequency of the Passband:

f=. 500*14 . 32MHz/2=3 . 58MHz

Therefore, the center frequency of the passband is found

to be 4.1 MHz and the subcarrier frequency of 3.58 MHz is

slightly below the center of the passband, both as predicted

by Reference 2. The "DSL" program was then used to obtain

input/output graphs using the rational polynomial form of

the filter as shown in Figure 3.4. In this particular

implementation and throughout the rest of the

implementations, a standard sine function was used for the

input to the filter. Figures 3.5, 3.6 and 3.7 show output

responses for inputs below, within, and above the passband

respectively as indicated. Again, as expected, the output

was zero (steady state) for an input below the passband.

The output for the in-band subcarrier frequency of 3.58 MHZ
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TITLE DIGITAL FILTER
******** T0 USE THIS PROGRAM, DO THE

1. BE AT A TEK618 GRAPHICS
2. TYPE "CP DEFINE STORAGE
3. TYPE "I CMS"
4. TYPE "LINKTO DSL"

RUNNING THE PROGRAM ******
5. GO INTO XEDIT AND MODIFY, IF NECESSARY,

OF THE FILTER COEFFICIENTS.
6. NOW YOU CAN RUN AS MANY TIMES AS YOU WANT

PROGRAM, TYPE "DSL DIGITA FORTRAN Al (
G"

FOLLOWING STEPS:
TERMINAL * (YOU ONLY NEED
1500K" * TO DO THESE FOUR

* WHEN YOU FIRST
* LOG ON. . .

)

YOUR VALUES

TO RUN THE

*

*

*

*

**
*

*

*

*

*

COMPLEX S,H,H1,H2,H3,H4
CONST Al=-2. 0, A2=-l. 0,A3=5. 0,A4=-2. 0,A5=-5. 0, A6=4. 0, A7=4.
CONST A8=-5. 0,A9=-2. 0, A10=5. 0, All=-1. 0, A12=-2. 0, A13 = l.

* K=( 1. /( 1+A1+A2+A3+A4+A5+A6+A7+A8+A9+A10+A11+A12+A13 )

)

THET=THETA*PI
S=CMPLX(0. ,THET)
H1=A1*CEXP(-S)+A2*CEXP(-2*S)+A3*CEXP( -3*S ) +A4*CEXP( -4*S

)

H2=A5*CEXP(-5*S)+A6*CEXP(-6*S)+A7*CEXP(-7*S)+A8*CEXP( -8*S)
H3=A9*CEXP( -9*S)+A10*CEXP( -10*S)+A11*CEXP( -11*S ) +A12*CEXP( -12*S)
H4=A13*CEXP( -13*S)+CEXP(S*0. )

H=H1+H2+H3+H4
SHIFT=RADEG*PHASE(0. ,H)
MAGH=10**GAIN(H)

RENAME TIME=THETA
CONTROL FINTIM=1.00,DELT=. 01
PRINT . 1,MAGH, SHIFT
SAVE . 01, MAGH, SHIFT
GRAPH (DE=TEK618) THETA(UN=PI RADIANS) , MAGH
GRAPH (DE=TEK618) THETA(UN=PI RADIANS) , SHI FT( UN=DEGREES)
LABEL FREQUENCY RESPONSE MAGNITUDE OF FIR DIGITAL FILTER
LABEL PHASE SHIFT PLOT FOR FIR DIGITAL FILTER
END
STOP

Figure 3.3 DSL Program Entry Instructions and Magnitude-
Frequency Response Program
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TITLE DIGITAL FILTER(REAL TIME RESPONSE)
INITIAL Y=0.
INITIAL X1=0. ,X2=0. ,X3=0. ,X4=0. ,X5=0. ,X6=0. ,X7=0. ,X8=0. ,X9=0. ,X10=0.
INITIAL X11=0. ,X12=0. ,X13=0.
INITIAL X=0.
CONST Al=-2. 0,A2=-1. 0,A3=5. 0,A4=-2. 0,A5=-5. 0,A6=4. 0, A7=4.
CONST A8=-5. 0,A9=-2. 0,A10=5. 0,A11=-1. 0,A12=-2. 0,A13=1.
CONST B=l.
CONST F=3. 58E5
CONST FS=1. 432E7
DYNAMIC

X13=X12
X12=X11
X11=X10
X10=X9
X9=X8
X8=X7
X7=X6
X6=X5
X5=X4
X4=X3
X3=X2
X2=X1
X1=X
TIME1=K/FS
THETA=2. *PI*F*TIME1
X=B*SIN(THETA)
Y=X+A1*X1+A2*X2+A3*X3+A4*X4+A5*X5+A6*X6+A7*X7+A8*X8+A9*X9. .

.

+A10*X10+A11*X11+A12*X12+A13*X13
RENAME TIME=K
CONTROL FINTIM=100,DELT=1.
PRINT 1. ,TIME1,X,Y
SAVE 1. ,TIME1,X,Y
GRAPH (DE=TEK618) TIME1( UN=SECS) , Y( MA=5 )

GRAPH (DE=TEK618) TIME1( UN=SECS) ,X( MA=4)
LABEL OUTPUT OF DIGITAL FILTER
LABEL INPUT TO DIGITAL FILTER
END
STOP

Figure 3.4 DSL Program of FIR Filter in
Rational Polynomial Form
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passed through the filter with a gain of approximately 23 as

predicted by the magnitude-frequency response (Figure 3.2).

And finally for an input above the passband, the output

showed aliasing in the computer environment as the sampling

frequency is no longer at least twice the input frequency-.

C. FORTRAN IMPLEMENTATION

The next step in preparation for implementing this

filter in bit-slice was to implement the filter in Fortran

on the VAX mainframe. The original concept was that once

the Fortran version of the filter was working, the VAX

command "Fortran/List/Machine_Code 'File Name" 1 [Ref. 13]

would then be used to obtain the program file in a form

similar to the VAX macro assembly listing. The purpose of

obtaining this assembly code was to implement the filter at

the assembly language level or at least gain some insight as

to how the filter might be better implemented in bit-slice.

These "macro" level commands turned out to be too straight

forward for the "micro" level language of the bit-slice,

especially when considering the use of the registers for the

shifting, as will be demonstrated in the next chapter.

The six stage shift-and-add form of the filter was used

with the variables added to Figure 3.1 as shown in Figure

3.8. The equations for this implementation are as follows:
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Stage 1 Y1=X(K)-X2
X2=X1
X1=X(K)

Stage 2 Y2=Y1+Y14
Y14=Y13
Y13=Y12
Y12=Y11
Y11=Y1

Stage 3 Y3=Y2+Y23
Y23=Y22
Y22=Y21
Y21=Y2

Stage 4 Y4=Y3-Y31
Y31=Y3

Stage 5 Y5=Y4-Y41
Y41=Y4

Stage 6 Y(K)=Y5-Y52
Y52=Y51
Y51=Y5

For ease of understanding the equations, each of the six

adder stages are printed in bold face type. The equations

which follow the adder equations are used to obtain values

for the unit-time delay variables. For example, in the

Stage 1 adder equation, the variable X2 represents the value

of X(K) delayed two units of time. To obtain the value for

X2 , the two equations which follow the Stage 1 adder

equation are used, as shown in an example in Figure 3.9. In

this example, at time t, X(K) is equal to 5. Two units of

time later, at time t+2, the value of 5 has been 'shifted'

to the variable X2 in the adder equation.

A structured Fortran programming approach was used to

implement the filter, at this point in the development, with

the program as shown in Figure 3.10. This approach offered

many advantages. First, by breaking the different

components of the program into a main calling routine,
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Data Secruence
time t: X(K)
time t+1: X(K)
time t+2: X(K)

=5
=8
=10

Initial Conditions
X1=0
X2=0

Time Secruence

t t+1 t+2

Y1=X(K)-X2
=5-0

Y1=X(K)-X2
=8-0

Y1=X(K)-X2
=10-5

X2=X1
=0

X2=X1
=5

X2=X1
=8

X1=X(K)
=5

X1=X(K)
=8

X1=X(K)
=10

Figure 3.9 Example of Stage 1 Equations and Numerical
Representations for Time t Through Time t+2
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C THIS PROGRAM IS A REPRESENTATION OF A 13TH ORDER BAND PASS FILTER
C

REAL *8 X( 100),Y( 100),T( 101)
INTEGER N
PRINT 4

4 FORMAT (
'
1

'

)

CALL INPUT (N,X,T)
CALL FUNCT (X,Y,N)
CALL OUTPUT (X,Y,T,N)
PRINT 4
STOP
END

C

SUBROUTINE INPUT (N,X,TIME1)
REAL *8 X(100),F,FS,TIME1( 101)
INTEGER N,K
N=100
F=3.58E6
FS=1. 432E7
TIME1( 1)=0.
DO 100 K=1,N

THETA=2. *3. 1415926*F*TIME1( K)
X(K)=SIN(THETA)
TIME1(K+1)=K/FS

100 CONTINUE
RETURN
END

C
SUBROUTINE FUNCT (X,Y,N)
REAL *8 X(100),Y( 100)
REAL *8 X1/0./,X2/0./,Y14/0.//Y13/0./»Y12/0./-Y11/0./.Y23/0./
REAL *8 Y22/0./.Y21/0./.Y31/0./.Y41/0./.Y52/0./.Y51/0./
INTEGER K,N
DO 50 K=1,N

Y1=X(K)-X2
X2=X1
X1=X(K)
Y2=Y1+Y14
Y14=Y13
Y13=Y12
Y12=Y11
Y11=Y1
Y3=Y2+Y23
Y23=Y22
Y22=Y21
Y21=Y2
Y4=Y3-Y31
Y31=Y3
Y5=Y4-Y41
Y41=Y4
Y(K)=Y5-Y52
Y52=Y51
Y51=Y5

50 CONTINUE
RETURN
END

C
SUBROUTINE OUTPUT (X,Y,T,N)
REAL *8 X(100),Y( 100) ,T( 101)
INTEGER I,N
DO 200 1=1

# N
WRITE (13,220) I , X( I ) , I , Y( I ) , I ,T( I

)

220 FORMAT (
' X' , 12, IX, ' =' ,D17. 10, 5X, '

Y' , 12, IX, ' =' ,D17. 10,

5

5 'T' ,12, IX, '=' ,D17. 10)
200 CONTINUE

RETURN
SND

Figure 3.10 Fortran Program of FIR Filter in Shift/Add Form
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input, function (the filter) , and output, the program was

easier to write and easier to understand. Second, it

allowed the section to be later implemented in the filter

hardware to be separated from the rest of the program.

Finally, it allowed changes to be made easily to the input

and output routines during the many phases of development

and will be useful for any follow-on work that might be done

with this filter.

After completing and running this version of the filter

implementation, the results were found to be the same as the

rational polynomial form of the filter. In fact, these

equations were transferred to the "DSL" program as shown in

Figure 3 . 11 and the graphs produced were identical to the

rational polynomial graphs shown earlier. The problem

encountered in running the filter in Fortran on the VAX was

that although a stream of output data was produced, there

was not the quick visual reference as provided by the "DSL"

program. The Fortran program proved to be useful later on

however, when Root Mean Square (RMS) values were desired and

also when flags were added to the program to determine

overflow conditions as will be shown.

D. FIXED POINT IMPLEMENTATION AND QUANTIZATION NOISE
EFFECTS

The next and final step before being able to implement

the filter at the bit-slice level was to implement the
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TITLE DIGITAL FILTER( REAL TIME RESPONSE)
INITIAL Y=0.
INITIAL X1=0. ,X2=0. ,Y14=0. ,Y13=0. ,Y12=0. ,Y11=0. ,Y23=0. ,Y22=0. ,Y21=0.
INITIAL Y31=0. ,Y41=0. ,Y52=0. ,Y51=0.
INITIAL X=0.
CONST B=l.
CONST F=3. 58E6
-CONST FS=1. 432E7
DYNAMIC

TIME1=K/FS
THETA=2. *PI*F*TIME1
X=B*SIN(THETA)
Y1=X-X2
X2=X1
X1=X
Y2=Y1+Y14
Y14=Y13
Y13=Y12
Y12=Y11
Y11=Y1
Y3-Y2+Y23
Y23=Y22
Y22=Y21
Y21=Y2
Y4=Y3-Y31
Y31=Y3
Y5=Y4-Y41
Y41=Y4
Y=Y5-Y52
Y52=Y51
Y51=Y5

RENAME TIME=K
CONTROL FINTIM=100,DELT=1.
PRINT 1. ,TIME1,X,Y
SAVE 1. ,TIME1,X,Y
GRAPH (DE=TEK618) TIME1( UN=SECS) , Y( MA=5

)

GRAPH (DE=TEK618) TIME1( UN=SECS ) ,X( MA=4)
LABEL OUTPUT OF DIGITAL FILTER
LABEL INPUT TO DIGITAL FILTER
END
STOP

Figure 3.11 DSL Program of FIR Filter in Shift/Add Form
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filter using fixed point precision arithmetic and to observe

the effects of truncation noise introduced. Although the

29203 evaluation board allowed for 16 bit precision in its

ALU processor, Dr. Lee imposed the additional constraint of

implementing the filter in bit-slice using only 8 of the 16

bits on the 29203 evaluation board. The purpose for this

change is to allow for easier implementation in discrete

random logic hardware at a later date.

Up to this point, the computer was assumed to have

infinite precision with no effects due to converting from an

analog signal to a digital signal through sampling. This

conversion from a smooth curve in the ideal case to a signal

which has been restricted to a fixed number of signal levels

or quantization levels in the sampled case introduces what

is known as quantization noise. In the floating point case

the precision is assumed infinite, but when comparing the

RMS value of the floating point lOOKHz 10*sin(Theta) input

signal to the ideal RMS value (0.707 of the magnitude), the

error is found to be 1.087 or approximately 15%. (Note:

The RMS values were obtained by inserting instructions in

the Fortran program to add the squared sampled values over

the period of a complete sine wave, taking the average of

the sum and then taking the square root to obtain the RMS

value.) When comparing the RMS value of a fixed point

lOOKHz 10*sin(Theta) input signal to that of the ideal

signal, the error was found to be 1.531, a difference of
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only 0.45 from the floating point case. This difference of

approximately 0.4 did not change significantly as the

magnitude of the input signal was increased. Although this

difference did not appear to be significant, the difference

between the floating point and fixed point signal input had

a significant effect on the output of the filter as will be

shown in the next paragraph. This data is presented in

Table I and is summarized below.

The major concentration of effort was spent in looking

at how the fixed point output of the filter differed from

the floating point case. For the out-of-band floating point

signal, 10*sin(Theta) at 100 KHz, the steady state RMS value

was found to be very nearly zero at 0.391 x 10"" 3 which is

shown to be negligible in Figure 3.12. For the same signal

in fixed point, the noise is found to be significant, with

the steady state signal ranging in value from -9 to +9 and

with an RMS value of 3.86 as shown in Figure 3.13. The

noise which is introduced is first due to the limited number

of fixed point quantization levels, with the signal ranging

from -10 to +10 in increments of 1, which also causes the

sampled signal to be truncated. To be exact, the signal

ranges from -9 to +9 due to the fact that the computer

truncates the signal to the next lower number in the

positive case and to the next higher number in the negative

case. It is this truncation of the signal which introduces
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additional noise. As the signal was increased in value, for

the floating point case, the signal-to-noise ratio remained

constant. That is to say, for every 10-fold increase in the

signal level, the output noise level was also increased by

10-fold. Although this is not an analog signal, this seemed

to correlate with the statement made by Gold [Ref. 14] that

every analog signal will have some finite signal-to-noise

ratio. Therefore, increasing the accuracy by which the

signal is represented will only increase the accuracy by

which the noise is represented as well. In the fixed point

case, however, as the accuracy of the signal representation

was increased, the output noise level remained fairly

constant with an RMS value ranging approximately between 3

and 4. As shown in Figures 3.14 and 3.15, this noise

becomes less and less significant as the input signal is

increased and therefore the signal-to-noise ratio is also

increased.

With this information in hand, the next problem was to

determine the maximum signal which could be used as an input

to the filter without producing an overflow, using the

available 8 bits of accuracy. Using 8 bits, the integer

signal levels could range from -128 to +127 in the two's

complement representation. This meant however, that with

the gain of 2 3 produced by the filter at the subcarrier

frequency of 3.58 MHz, the maximum input to the filter would

be approximately 5*sin(Theta) . For the maximum gain of the
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filter of approximately 30, the maximum input signal would

have to be even less. As seen by the previous discussion,

this would not provide the necessary accuracy needed in

quantization levels of the signal. To compensate for this,

the signal was divided by two after each adder in the

filter, as shown in the "DSL" program of Figure 3.16.

Dividing by two allowed implementation at the bit-slice

level using shifters rather than expensive and time-

consuming dividers. Now with these dividers in place, the

maximum input signal to the filter as well as the number of

dividers actually required needed to be determined. To

accomplish this, the Fortran version of the program was used

and a flag was inserted after each adder to determine if an

overflow condition existed with a given input magnitude.

The magnitude was incremented in steps through the use of a

DO LOOP in the main calling program. This program is shown

in Figure 3.17. It had appeared, using "DSL", that a

maximum signal of 127*sin(THETA) could be used with 5 of the

6 dividers in place to produce an output signal of

approximately 91*sin(THETA) without producing an overflow

condition as shown in Figure 3.18. However, using the flag

program on the VAX Fortran, it was found that the first

adder limited the input signal to a magnitude of

63*sin(THETA) . Anything above this magnitude would cause an

overflow condition to occur. This resulted in an output

magnitude of only 45*sin(THETA) which meant that the 8 bit
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TITLE DIGITAL FILTER(REAL TIME RESPONSE)
FIXED X,Y / X1 / X2 / Y14,Y13 / Y12 / Y11 / Y23 / Y22,Y21,Y31 / Y41 / Y52,Y51
FIXED Y1,Y2,Y3,Y4,Y5
INITIAL Y=0
INITIAL X1=0 , X2=0 , Y14=0 , Y13=0 , Y12=0 , Y11=0 , Y23=0 , Y22=0 , Y2 1=0
INITIAL Y31=0 / Y41=0 / Y52=0,Y51=0
INITIAL X=0
CONST B=63.000
CONST F=1.E5
CONST FS=14200000.
DYNAMIC

TIME1"=K/FS
THETA=2. *PI*F*TIME1
XX=B*SIN(THETA)
X=INT(XX)
Y1=X-X2
Yl=Yl/2
X2=X1
X1=X
Y2=Y1+Y14
Y2=Y2/2
Y14=Y13
Y13=Y12
Y12=Y11
Y11=Y1
Y3=Y2+Y23
Y3=Y3/2
Y23=Y22
Y22=Y21
Y21=Y2
Y4=Y3-Y31
Y4=Y4/2
Y31=Y3
Y5=Y4-Y41
Y41=Y4
Y=Y5-Y52
Y52=Y51
Y51=Y5

RENAME TIME=K
CONTROL FINTIM=100,DELT=1.
PRINT 1. ^IMEl^Y
SAVE 1. ,TIME1,X,Y
GRAPH (DE=TEK618) TIME1( LTN=SECS ) , Y( MA=5 )

GRAPH (DE=TEK618) TIME1( UN=SECS) ,X( MA=4)
LABEL OUTPUT OF DIGITAL FILTER
LABEL INPUT TO DIGITAL FILTER
END
STOP

Figure 3. IB DSL FIR Filter Program in Shift/Add Form With
Dividers Added
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c mu rxooxA* i> a utuiBttATIOM or * .it* ouu ajj<o pass iiliu
c

IMTXOXX X( 10OI. VI 100 1

UAL T( 101)
IMTtata M,iHov».rr.e.»!MC*
rtiHT t

4 lOXKAT I'l'l
0O 40 •!«:». *n. 70

•tinea
CALL IHfUT (N. X.T.I)
CALL fUMCT (X.Y.H. INOVt.XI)
call ourrvr (x.y.t.i.u.ihovi)
II1HI «
ir i nova. or. o) thxm

CO TO 10
no ir

40 COMTIMU*
io not

DC
e ...

—

——

—

4UMOUTIMS IMtUT ( M.X.TIRX1.)
Ual xx( looi.r. jt.Ti«M ioii.tuxta
INTXOII X( 100)
1KTICXA M.X.I
N»100
l-l.lllt
!•!. 41117
T1KX1(1)«0.
00 100 K*1,N

tHITA-3. •> - 1411424*T*T1KX1(K)
U( K)-fLOAT( 1) *IIM< TUXTA)
X(K)>IKI(U(X))
TIIUl(K>l)-X/tl

100 COWTIMUXMMM
DC

.................... .......................... ............

(UMOVTIHX ruNCT IX.Y.H. IHOVX.XI)
IKTtoxa x< iooi.yi ioo).yi,yi.yi.y«.yi
IHTCOIX Xl/0/,X1/0/.Y14/0/,Y11/0/,Y11/0/,Y11/0/,Y11/0/
IKTIOII Y11/0/.Y11/0/.Y11/0/,Y41/0/.Y11/0/,YS.I/0/
itmoia xr.M.iNovt.iiLAO
1HOVX-0
DO 10 U-l.M

Yi-xixr)-xa
ItLAO-l
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00 TO 40
tio n
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Yl-Yl/2

X2-X1
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2
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OO TO 40
uo ir
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Y3-Y3.Y23

IILAO- 3

CALL OVULO (Tl, IMOVB, IILAO)
If (INOVa.OT.O) TUZM

00 TO 40
UO II
call iuirr (Y)|

TI1*(U
Y22-Y21
Y31-Y3
Y4-Y1-Y31

IILAS-4
CALL OVULO (Y4.INOV*. IILAO)
II (MOV*. OT. 0) THXM

00 TO 40
UO II
CALL IMIIT (Y4)

Y31-YJ
Y3-Y4-Y41

' IfLAO-S
CALL OVULO (Y3.IHOVX, IILAO)
II (IMOVa. OT. 0) HUM
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UO II
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Y41-Y4
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1
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200 CONTINUE
lXTUXM
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c ...... .......... ... . . ..........
4U4tOUTlMI OVULO ( IN, IMOVB, IILAO)
lKTICXX IN, IHOVX. IILAO
II (IN. OT. 117) THXM
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FigurB 3.17 Fortran Program of FIR Filter in Shift/Add Form
Uith Dividers and Flags Added
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accuracy of the bit-slice would not be fully utilized. The

dividers were then removed one at a time in a progressive

manner through the filter and it was determined that with

the limiting input magnitude of 63*sin(THETA) , the fifth

divider was no longer needed in the filter. This meant that

the maximum output magnitude of the filter at the subcarrier

frequency of 3.58 MHz was approximately 91*sin(THETA) as had

been previously predicted by the "DSL" program. This limit

could have been determined by simply adding the magnitude of

63 to itself to realize that it would produce an overflow

condition of 128. It was thought, however, that the adding

and shifting of the filter with the added dividers might

produced some higher limit. Indeed, if the frequency was

varied slightly from that of the in-phase frequency of 3.58

MHz (e.g. 3.5 MHz), it was found that a slightly higher

input magnitude could be used without producing an overflow

condition.

This concluded the necessary implementation of the

filter at the Fortran level and its accompanying analysis.

Without this step in the design process, the implementation

at the lower level language of the bit-slice would certainly

have been more difficult. Before leaving this section, it

should be pointed out that one further step was taken in the

analysis of the quantization noise introduced by the filter.

The rational polynomial form of the filter was changed to

run as fixed point and the output data was compared to the

69



www.manaraa.com

shift-and-add fixed point output data. Although it appeared

from [Ref. 34] that the rational polynomial form of the

filter might introduce additional quantization noise, there

was no observable difference in the output data. This may-

be attributable to the fact that the coefficients of the

filter are already of integer form.
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IV. BIT-SLICE IMPLEMENTATION

A. INTRODUCTION

The Am29203 evaluation board was used to investigate the

effectiveness of implementing the .FIR filter in a bit-slice

design. The Am29203 evaluation board is a tool whereby a

designer may learn and develop the skills needed to design

with components of the Am2900 family, keeping in mind that

the board would not be used in an actual implementation.

AMD offers excellent documentation of the board through its

Am292 03 Evaluation Board User's Guide which offers many

step-by-step examples of using the three major components of

the evaluation board. The function and utility of these

components were briefly introduced in Chapter II. Once the

bit-slice components and the microprogramming of these bit-

slice components are fully understood, the user may then

develop and analyze microprograms through the use of a

monitor using a screen-oriented terminal. The relationship

of the 'monitor' to the system is shown in Figure 4.1. The

'monitor' should be treated as a separate system from the

primary system and except for the terminal commands, its

architecture and details of execution should be transparent

to the user. Using the 'monitor' commands, the user is able

to load and display main memory, micro memory (control

store) , and registers and then run a loaded microprogram by
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stepping through it or by using set breakpoints. [Ref. 7: pp.

4.2-4.9]

Previous work done in the area of bit-slice at the Naval

Post Graduate School by Morris Bennett Stewart II [Ref. 15]

used a dummy terminal for entering and analyzing programs.

The disadvantages to this approach are that programs must be

entered by hand, greatly reducing the scope of the programs

which can be entered, there is no memory capability for

retaining programs and there is no method for printing data.

The preliminary work which therefore had to be done before

implementing the FIR filter in bit-slice was to emulate the

dummy terminal using an IBM PC and the commercial software

Smartcom II. This proved to be a somewhat difficult task

due to the lack of documentation provided and the lack of

expertise in this area given by personal conversation with

AMD. Once implemented however, the programs could then be

created using a personal editor to write ASCII files and

stored to disk. Then these files could be downloaded to the

Am292 03 evaluation board using Smartcom II. This greatly

facilitated the ability to run, analyze and change the FIR

filter microprogram. The additional feature was the ability

to record a working session or print out data stored in

micro and macro memory through the use of the printer. A

brief explanation and documentation of implementing the

monitor through the use of Smartcom II is provided in

Appendix A.
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With the above hardware and software in place, the FIR

filter could now be adequately implemented using the Am29203

evaluation board. This chapter will describe the use of the

major components of the evaluation board and then present

the macro and microprogram used to control these components

and thereby implement the FIR filter using bit-slice

methodology. Finally, a time comparison between Fortran

implementation and bit-slice implementation will be given.

B. USE OF EVALUATION BOARD COMPONENTS

Chapter II introduced the basic architecture and

operation of the three major components of the evaluation

board which are directly controlled by the micro word: the

Am2910 12 bit sequencer; the 16 bit ALU consisting of four

4-bit Am29203 CPU slices; and the Am2904 control unit. A

good understanding of these components and the micro fields

used to control them are required before a designer can

write any microprograms using bit-slice. For example, a

simple add at the macro level may take several steps in

microcode. Although a novice designer may be able to "get

the job done", it takes an expert designer to truly optimize

and get the full time saving benefits of the microcode. It

has been estimated that it may take fully two years or more

before a designer will be able to design easily using bit-

slice methodology.

The Am2910 field can be taken as an example of how the

microword controls the components directly. The basic
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concept which must be understood about the Am2910 is that it

simply sequences the microinstructions, primarily through

the use of loops, counters and stack register. The

communication interface with the Am2904 provides the

necessary condition code status for the conditional

branching. The function of the Am2910 is probably best

understood by studying the sixteen Am2910 instructions shown

in Figure 4.2. These sixteen instructions are represented

by the sixteen hexadecimal values 0-F and in the case of the

Am29203 evaluation board, make up the field of the last 4

bits of the evaluation board's 48 bit microword. Although

it appears to be a fairly simple concept, [Ref. 7
: pp. 6.1-

6.18] uses an entire chapter to discuss the use of this

field and yet barely even touches on the subject of the

interrelationships required between the Am29203 and Am2904

fields.

As can be seen from the above discussion, it would be

impossible in this format to offer a brief explanation of

each of the fields and overlaid fields of the 48 bit

microword of the evaluation board. It is sufficient to say

here that the Am29203 performs the boolean logic operations

for executing the desired arithmetic or logic functions and

the Am2904 provides the status testing and shifting of the

operations.
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C. BIT-SLICE IMPLEMENTATION OF THE FIR FILTER

1. General Goals

The portion of the Fortran program implementation of

the FIR filter to be implemented in bit-slice is repeated

here in Figure 4.3. The DO loop portion of the code may be

somewhat of an artificiality, imposed by subjecting the

filter to a limited number of data points for testing

purposes, but was necessary in the testing of the bit-slice

code as well.

It was felt that the major goal of implementing this

filter in bit-slice would be to retain as much data in the

sixteen Am29203 general purpose registers as possible. This

would greatly reduce the most time-consuming task of reading

and writing required data to be manipulated from RAM. The

ideal situation of course would be to retain all of the 13

shifting (delay) data points in the general purpose

registers of this 13th order filter. This seemed somewhat

impossible since generally only 7 of the 16 general purpose

registers are actually available for general data

manipulation. However, by not using the standard macro

instructions provided with the evaluation board, it appeared

potentially possible to free up 15 of the 16 general purpose

registers for this specific application, with the 16th

register needed for the macro program counter. With this in

mind, the filter is rewritten to use the registers as

variables in the delay equations as shown in bold type in
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Figure 4.4. This would then leave two registers available

for incoming and outgoing data from RAM. Now looking at the

implementation of the new version of the filter, it is seen

that 6 variables are still required for each of the six

stages of the filter and one is needed for the input to the

filter. However, it was discovered that by alternating the

names of the variables, the number of variables required

could be reduced from 7 down to 2 as shown in bold type in

Figure 4.5. This meant that an input to the filter could be

read from RAM, then entirely manipulated in the general

purpose registers through the six stages of the filter, with

the output of the filter then written to RAM. These changes

reduced the total number of reads/writes required to RAM

from 38 down to only 2. The specific time savings will be

presented later in this chapter.

2 . Bit-Slice Macro and Micro Instructions

In the design of the FIR filter in bit-slice, the

macro instruction and micro instructions were developed

somewhat simultaneously and it is difficult to separate the

two. However, logically the macro instruction for the

filter should be presented first. A typical instruction

sequence, using 30 points of input data to the filter for

testing of the code, is shown in Figure 4.6. This

instruction sequence is shown as printed out by the macro

memory display function of the evaluation board 'monitor 1
.

It displays the data in the form of eight memory locations
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Y1-X-R2
R2-R1
Rl-X
Y2-Y1+R6
RB-R5
RS-R4
R4-R3
R3-Y1
Y3-Y2+R9
R9-RB
RB-R7
R7-Y2
Y4-Y3-RA
RA-Y3
Y5-Y4-RB
RB-Y4
Y-Y5-RE
RE-RD
R0-Y5

Figure 4.4 FIR Filter Using 13 Registers of the Am29203

R0-RC-R2
R2-R1
Rl-RC
RC-R0+R6
R6-R5
R5-R4
R4-R3
R3-R0
R0-RC+R9
R9-RB
R8-R7
R7-RC
RC-RO-RA
RA-RO
RO-RC-RB
RB-RC
RC-RO-RE
RE-RD
RD-RO

FigurB 4.5 FIR Filter Using 15 Registers of the Am29203
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>DM ADDR:02 00

0200 - 01F0 001E 0000 3E00 FFOO C200 0300 3E00

0208 - FBOO C200 0600 3E00 F800 C200 0900 3E00

0210 - F500 C300 ODOO 3D00 F200 C300 1000 3C00

0218 - EEOO C400 1300 3B00 EBOO C600 1600 3A00

Figure 4.6 Macrocode for FIRFILT Routine

per line. The first instruction, 01F0, is the actual

"calling" instruction of the filter and as an example, might

be given the macro instruction mnemonic of FIRFILT which

would represent the call for the FIR filter microprogram.

The first two digits, 01, represent the opcode portion of

the instruction and through the mapping PROM, maps to the

micro-address 0004 where the microprogram sequence of

instructions for the filter is located. The second two

digits, F0, represent the source and destination registers,

register F and register respectively, to be used later in

the instruction register in the micro code. The next macro

instruction in the sequence is actually not an instruction

but is the hexadecimal representation of the number of data

points which follow. This number will be fetched to the Q

register at the microprogram level and will be used as a

counter for the number of data points to process in the

filter. The next 30 instructions are then the 30 data

points represented in hexadecimal form which will be

processed by the filter at the micro instruction level.
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Now to run this macro instruction, FIRFILT, at the

micro instruction level, the macro instruction must first be

fetched from macro memory into the microprogram instruction

register (IR) . The standard instruction fetch [Ref. 7:p.

9.7] is used here and the three micro instructions needed

are shown in Figure 4.7. A detailed explanation of all

micro instructions is provided in Appendix B. Basically,

the first instruction loads the instruction to the IR, the

second instruction updates the PC (macro program counter

located in register F) , and the third instruction maps the

instruction to the microroutine which will execute the

instruction. Two notes are made here. First, this standard

instruction fetch also places a copy of the instruction in

register D which may be needed in some microprograms. In

this case however, it will be overwritten by the filter

microroutine. Secondly, the Am29203 chip allows the

fetching of an instruction and the updating of the PC to

occur simultaneously, however the architecture of the

evaluation board does not [Ref. 7:p. 9.8].

IFETCH: 0200 - 084F 3FD6 FFDE

0201 - 0044 7FFF FFFE

0202 - FFFF FFFF FFF2

Figure 4.7 Microroutine IFETCH
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As stated earlier, the instruction is mapped to the

micro address location 0004 and this microroutine is shown

in Figure 4.8. Although these 49 lines are one

microroutine, it is broken down into several sections and

labeled with mnemonics to break this long routine into

easily described sections and to create an easy method for

locating a particular section of the microroutine in

Appendix B. This microroutine is described in its mnemonic

labeled sections as follows:

LDCNTR—Loads the Q register with the counter as taken
from macro memory. The PC is not updated here but
put in the loop.

CLREG—Clears 13 registers for the implementation of the
13 delay equations.

LOOPBEG—Marks the beginning of the loop. It updates the
PC and brings in the first data point.

STAGE1—This marks the actual beginning of the filter in
microcode. Address H#014 provides the first adder
stage, H#015 and H#016 provide the call for the
microroutine to divide the result by 2 (shifter
microroutine) depending on whether the result is
positive or negative, and H#018-019 provide the
microcode for the 2 delay equations following the
adder. (Note: H stands for hexadecimal)

STAGE2—Provides the second stage of the filter with
adder, call for divide by 2 microroutine, and 4

delays.

STAGE3—Provides the third stage of the filter with adder,
call for divide by 2 microroutine, and 3 delays.

STAGE4—Provides the fourth stage of the filter with
adder, call for divide by 2 microroutine, and 1

delay.

STAGES—Provides the fifth stage of the filter with adder
and one delay.
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rtnemonic
LDCNTR

:

0004 - 084F FFD3 FFCE
0005 - 0064 3FFF FFCE

CLREQ: 0006 - 0248 FFFF FF1E
0007 - 0248 FFFF FF2E
ooos - 0248 FFFF FF3E
0009 - 0248 FFFF FF4E
OOOA - 0248 FFFF FFSE
OOOB - 0248 FFFF FF6E
oooc - 0248 FFFF FF7E
OOOD - 0248 FFFF FF8E
OOOE - 0248 FFFF FF9E
OOOF - 0248 FFFF FFAE
0010 - 0248 FFFF FFBE
0011 - 0248 FFFF FFDE
0012 - 0248 FFFF FFEE

LOQPBEB: 0013 - 0044 7FFF FFFE
0014 - 084F FFD3 FFCE

STAGE1 t 0015 - 8041 507F F2CE
0016 - FFFF FFFF E50C
0017 - FFFF DF09 E705
0016 - 0246 3FFF F12E
0019 - 0246 3FFF FC1E

STAGE2: 001A - 4043 107F F6CE
001B - FFFF FFFF E10C
001C - FFFF DFD9 E305
0010 - 0246 3FFF F56E
001E - 0246 3FFF F45E
001F - 0246 3FFF F34E
0050 - 0246 3FFF F03E

STAGE3: 0021 - 8043 107F F9CE
0022 - FFFF FFFF E50C
0023 - FFFF 0FD9 E705
0024 - 0246 3FFF F89E
0025 - 0246 3FFF F78E
0026 - 0246 3FFF FC7E

STAGE4: 0027 - 4041 507F FACE
0026 - FFFF FFFF E10C
0029 - FFFF DFD9 E30S
002A - 0246 3FFF FOAE

STAGES: 002B - 8041 507F FBCE
002C - 0246 3FFF FCBE

STAGES: 002D - 4041 507F FECE
002E - 10C4 3FD4 FFCE
002F - 0246 3FFF FDEE
0030 - 0246 3FFF FODE

DECCNTR: 0031 - 8244 3FFF FFFE
0032 - 0030 7FFF FFOE
0033 - 0064 107F FFOE
0034 - FFFF D409 C133

Figure 4.B Microcode for FIR Digital Filter
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STAGE6—Provides the sixth stage of the filter with adder
and 2 delays. This marks the end of the filter in
the microroutine. Address H#02E places the filter
output data back into the macro memory location
pointed to by the PC which in doing so, writes
over the previous input data given at the
beginning of the loop.

DECCNTR—Decrements the counter and loops back to address
H#013 if the counter is not zero.

The microroutine above called another microroutine

for the dividing by 2, which is actually accomplished by

shifting in the two's complement implementation, without

offering an explanation. It would seem that a shift to

divide a positive or negative number by 2 using two's

complement arithmetic should require only one instruction in

microcode to implement the proper shift. Indeed, this would

normally be the case if the sign of the number being shifted

is known ahead of time. In fact, as shown in the example of

Chapter II, it is possible to accomplish a shift and add in

a single instruction. Two problems arise in this particular

implementation however. First, it is not known ahead of

time whether or not the operands will be positive or

negative. It should also be kept in mind that some of the

adder stages are actually subtractors. The second and

biggest problem in this case however comes from the

restriction imposed of using only 8 of the 16 bits available

in the ALU. A clearer understanding of two's complement

arithmetic would have saved a great deal of time in this

area. For example, using decimal integer arithmetic, a

three divided by two would result in a one with the .

5
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being truncated. This is also true of two's complement

arithmetic where the divide by 2 is accomplished by shifting

all the bits to the right by one and with a zero fill at the

most significant bit. However, if the eight bits of data

were placed in the upper eight bits as was first done, a

division by two in this case could cause a one to be

transferred into the upper bit of the lower eight bits. For

example, dividing the hexadecimal #0300 by two would result

in H#0180, which is indeed the correct result but it is not

the desired result of H#0100. To transfer the unwanted one

out of the upper bit of the lower eight bits requires eight

shifts to the right with zero fill to the left and then

eight shifts back to the left. This would then produce the

desired result of #0100. The case of dividing a negative

number in two's complement arithmetic is a bit more

complicated. For example, using integer decimal arithmetic,

dividing the number -3 by 2 would produce a result of -1.

In two's complement arithmetic however, where the divide by

two is accomplished by shifting to the right with a one

being filled in the most significant bit, the result would

be a -2. To account for this difference, a one must be

added to the operand, before the shifting, to produce a

correct result of -1. Therefore, to accomplish the correct

result using only the upper eight bits for entering data,

the operand must first be shifted to the lower eight bits

with ones being filled in the upper eight bits. Then a one
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is added to the operand and the final shift to the right

with one fill in the most significant bit is accomplished.

This places the correct result of dividing the operand by

two in the lower eight bits. The result is then shifted to

the left eight bits to place the result in the upper eight

bits.

A much more straightforward approach is obtained by

placing the incoming data in the lower eight bits. The

problem here, however, is that in the case of incoming

negative data, the upper eight bits must be filled with ones

to make the number in the lower eight bits negative. Again,

the rules for dividing a negative number by two in this case

still apply.

In this particular application, the first approach

presented of placing the data in the upper eight bits was

used, primarily for two reasons. First, the number of

operations used here was not of importance since this was an

artificiality which was placed on the problem using the

hardware which was available. With this in mind, the first

solution allowed for the solution of a much more interesting

problem and allowed for a broader knowledge of the bit-slice

to be obtained. Secondly, this approach originally offered

an easier method for entering the data. This was later

shown not to be valid for entering large amounts of data

through the aid of the computers. A file in Fortran in

hexadecimal form can be created using 'z' in the FORMAT
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statement when writing to a file. This hexadecimal file

will be in the correct form which can then be downloaded to

a disk. Once on the disk, the file can be transferred to

the bit-slice RAM using Smartcom II.

The set of microprogram routines for accomplishing

the divide by two in the upper eight bits for both the

positive and negative cases is shown in Figure 4.9. This

set is for an operand which is in the RC register. Another

set identical to this, only with '0' specified, was used

when the operand was stored in the R0 register. A straight

forward approach was used and the code was not optimized for

time, as was done in the filter microroutine. A detailed

explanation of the micro instructions is included in

Appendix B.

D. FORTRAN AND BIT-SLICE IMPLEMENTATION SPEED COMPARISONS

As pointed out in several of the references, including

the evaluation board user's guide [Ref. 7], the objective of

a full timing analysis is to find the longest path and then

use that time to determine the minimum clock period for the

given design. With this in hand, there are several

alternatives to the design. If the time used is acceptable,

one alternative would be to leave the clock period as it is.

If it is not acceptable, there are many alternatives to

improve the overall time used. One method would be to look

for ways to improve the algorithm or code used. Another
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1044 107F FFCE
FFFF 05D3 ES33
0004 3FE0 FFCE
0004 3FE0 FFCE
0004 3FE0 FFCE
0004 3FE0 FFCE
0004 3FE0 FFCE
0004 3FE0 FFCE
0004 3FE0 FFCE
0004 3FE0 FFCE
0004 3FE0 FFCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
FFFF E4F3 FFFA

0004 3FE1 FFCE
0004 3FE1 FFCE
0004 3FE1 FFCE
0004 3FE1 FFCE
0004 3FE1 FFCE
0004 3FE1 FFCE
0004 3FE1 FFCE
0004 3FE1 FFCE
0004 7FE1 FFCE
1044 107F FFCE
FFFF D5D3 E43E
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
0084 3FE0 FCCE
FFFF E4F3 FFFA

PDSITIUE CASE NEGATIUE CASE

Figure 4.3 Shifting flicraroutines
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would be to use faster components where needed such as using

faster memories. One faster component which might be used

is a variable clock circuit. It is used to lengthen or

shorten the clock period depending on the length of the

timing path for each instruction. [Ref. 7:p. 6.13]

The primary method used in this study to improve the

overall time was that of seeking ways to improve the

algorithm and code used. Other methods are also considered

in this section and the data obtained is shown in Table II.

The first comparison obtained is that between the Fortran

implementation on the VAX and that of the improved 16

register microcode implementation using the fixed and

extremely slow clock period of the evaluation board.

Improved microcode, here and in Table II, refers to the

microcode which was designed for this special FIR filter

application which takes full advantage of the 16 registers

of the Am29203. The timing of the Fortran was obtained by

using the subroutine "jcput". The code for this subroutine

and its placement in the Fortran program can be found in

Appendix C. The VAX routines LIB$INIT_TIMER and

LIB$SHOW_TIMER [Ref. 13] can also be used to obtain

estimates of the time required and is given in increments of

10 milliseconds. The time obtained for 100 iterations of

the filter was found to be 10 milliseconds or 100

microseconds per iteration. Using even the slowest form of

the bit-slice, using the fixed clock period of the
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TABLE II

TIME COMPARISONS FOR FIR IMPLEMENTATIONS

Method

Fortran Implementation

Evaluation Board Provided
Bit-Slice Code

Time (microseconds)

100

20
49 inst. * 408ns

Improved Bit-Slice Code using
29203 evaluation board

Evaluation Board Provided
Bit-Slice Code with PROM

Improved Bit-Slice Code using
292 03 evaluation board with PROM

High speed Am2900 family
Bit-Slice

VITESSE'S Gallium Arsenide
Bit-Slice

11
27 inst. * 408ns

14.85
27 inst. * 408ns
2 5 inst. * 153*ns

4.64
2 inst. * 408ns

25 inst. * 153ns

2.65

.78
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evaluation board of 408 nanoseconds, the time was found to

be only 11 microseconds per iteration of the filter, almost

10 times faster than the Fortran implementation. This was

obtained simply by multiplying the 27 instructions of

microcode of the filter, including the instructions for

updating the PC and counter, by the 408 nanosecond clock

period.

Next, a comparison was made between that of the

improved microcode and that of the provided code of the

Am29203 evaluation board. It is somewhat difficult to

determine the exact number of instructions needed using the

provided code without actually writing and testing the

routine, however it is estimated that it would take

approximately 49 instructions for a total time of 20

microseconds using this approach. The improved code

therefore has an approximate time savings of 45% over the

provided code.

One of the goals when improving the microcode was to

minimize the number of instructions which required a read

from RAM, such as those required when inputing data. In his

study of bit-slice, Morris Stewart [Ref. 15] documents how

the fixed instructions of the microcode could be placed in a

faster PROM to shorten the time path of these instructions.

Then a variable clock generator could be used to shorten the

clock period of these instructions to 153 nanoseconds. The

improved microcode can now take advantage of this since only
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2 of the 27 instructions require an access to RAM. The

total time now required is 4.64 microseconds as shown in

Table II. For the provided code, if it is assumed that the

13 delay variable addresses are in microcode or PROM, this

routine would still require 27 of the 49 instructions to

address the RAM for a total time of 14.85 microseconds. The

improved microcode clearly has an advantage in this case and

results in a time savings of nearly 70% over the provided

code.

Finally, a look is taken at how new bit-slice

devices presently on the market could be used to improve the

overall time of the filter implementation. Figures 4.10 and

4.11 provide control loop and data loop comparisons of AMD's

high speed versions of the Am2900 family to VITESSE'S

Gallium Arsenide 2900 family devices. As can be seen from

these figures, the high speed devices require a minimum

cycle time of 98 nanoseconds while the Gallium Arsenide

devices require a minimum cycle time of 29 nanoseconds.

Now, using these speeds, one iteration of the bit-slice

filter will require 2.65 microseconds and 0.78 microseconds

respectively. This is over 100 times faster than the

Fortran implementation and would result in a significant

amount of time savings with the large amount of data

iterations that would be used in an actual filter

implementation. It should be noted that these last

comparisons are made using only a single level pipeline,
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whereas in earlier comparisons, a three level pipeline is

used as delineated by White [Ref. 5].
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V. CONCLUSIONS

One of the strongest arguments against the use of bit-

slice designs is the time in which it takes to design with

these devices as compared to other methods. The proposed

trade-off with the longer design time is the ability to

achieve greater speeds thereby producing dividends in

processing large volumes of data over long periods of time.

In this limited study, however, it appeared that most of the

time in designing this simple FIR filter was spent toward

gaining a working knowledge of the bit-slice components and

overcoming the needed skills in working with two's

complement arithmetic. It seemed that once this working

knowledge is obtained, an expert designer should be able to

easily design such a simple circuit in a small amount of

time. The complexity of the bit-slice language necessarily

prohibits its use as a general design tool but its benefits

in speed have a range of application when left to the expert

designer. As seen from Chapters II and IV, the bit-slice

devices easily approach super-computer speeds and yet at a

small fraction of the cost. It should be pointed out here

that only a limited working knowledge was gained during this

study and there are certainly many more aspects and benefits

which could be learned through further study. The microcode
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implementation presented for the FIR filter probably is not

optimized and could be improved upon.

One of the problems of bit-slice methodology is its use

in limited studies such as this. For example, for a follow-

on study in this area, a researcher would have to go through

the same difficult process of learning and obtaining a

working knowledge of the bit-slice language before any

further work could be done. This obviously limits the scope

of the study and impedes the progress of research which can

made. The bit-slice evaluation board and accompanying

user's guide is an invaluable tool in learning the

application of the bit-slice components and it is difficult

to imagine how this material might be presented in a more

condensed form in order to achieve a faster learning

process.

As with any research, an analysis must eventually be

made as to what conclusions can be made and what questions

were raised during the research which remain unanswered. In

this study, a thirteenth-order FIR filter was successfully

implemented in bit-slice using only shifters and adders.

The two major goals of implementing the filter on the

evaluation board and using a computer to download files to

the evaluation board were achieved. The time savings using

the bit-slice implementation far out-weighed the time spent

in designing it. It was also seen that the implementation

could be limited to eight bits of accuracy without
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significantly affecting the results. One question which

came up during this implementation which could have been

further researched was how the limitation to 8 bits of

accuracy on the implementation truly affected the noise,

especially with the introduction of the 5 stages of shifters

or dividers. The main questions which were raised during

research and remain to be answered however, were: why were

the six stages of the filter put in the order in which they

were in; how does this order affect the quantization

effects; and how was this thirteenth order filter reduced to

a filter using six stages with coefficients of one?

In summary, the bit-slice methodology provides extremely

useful devices for achieving increased speeds in specific

applications, especially in those applications of high speed

graphics where large amounts of data to be processed benefit

from the improved processing times. Because of its

versatility in implementing any given instruction set, it

should not be ruled out as a design tool based merely on the

time required to design with it.
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APPENDIX A

TERMINAL EMULATION USING SMARTCOM II

The commercial software SMARTCOM II by Hayes [Ref. 17]

was used on the IBM PC to emulate the user terminal for the

monitor system of the Am29203 evaluation board. This

appendix will only document the problems encountered in

using SMARTCOM II and the necessary configurations which

must be made to use SMARTCOM II to communicate with the

evaluation board using the IBM PC. It should be noted here

that only the SMARTCOM II software was needed for the

configuration and the SMARTCOM II modem was neither used nor

installed.

The primary problem encountered in using SMARTCOM II was

not the configuring of the software, although this did prove

to be somewhat time consuming. The major problem was the

interconnection of the hardware. From the advice of

technicians consulted and two references used, including the

SMARTCOM II manual, it appeared that a null modem would have

to be used between the IBM PC and the evaluation board since

both are computers and have DCE connection ports. In fact,

a null modem was constructed with pins 2 and 3 crossed to

ensure that both computers could send and receive properly.

The problem discovered however, was that SMARTCOM II was

changing the signal internally since the DCE port of the IBM
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PC was behaving as if it were a DTE port. With this

discovery made, the only connection between the two

computers required was a straight line gender changer.

Once SMARTCOM II has been entered, there are several

screens which can be entered to change the required

parameters. First, the Batch Set Directory, a listing of

all batch sets (communication devices available) , must be

entered to list the evaluation board as one of the options

available. This is shown in Figure A.l. Next, the

Configuration Screen must be changed to reflect the

equipment being used as shown in Figure A. 2. Finally, the

Parameter Screen lists the variables or parameters for each

particular communication environment. Figure A. 3 shows the

parameter screen for the Bit-slice evaluation board

environment. These changes do not have to be made for every

entry into the SMARTCOM II software program.

The Menu Screen shown in Figure A. 4 is used to

communicate back and forth between the bit-slice evaluation

board environment and the SMARTCOM II environment. Option 1

is selected to enter the On-Line Screen and in this mode,

the IBM PC monitor and keyboard appear to the evaluation

board and user as if if were an ordinary terminal. To

terminate the session or bring in a data or program file

stored on disk, Fl is pressed to return to the SMARTCOM II

menu screen for the appropriate selection.
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Since the Smartcom program could only communicate up to

a baud rate of 2400, the baud rate of the evaluation board

had to be changed from its standard of 4800 baud rate to

that of 2400. This is done by simply changing a jumper

connection on the evaluation board from W4 to W3

.

The use of SMARTCOM II proved to be satisfactory for

this study. The biggest inconvenience was that SMARTCOM II

had to be completely exited to create a file or edit an

exiting file. This proved to be very time consuming when

trouble shooting the microroutine. There are now newer

software programs on the market which solve this problem and

allow the editing of existing files without exiting the

emulator. The editor which was used to create the ASCII

files was PERSONAL EDITOR 2 by IBM.
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APPENDIX B

DOCUMENTATION FOR MICROROUTINES

Micro Routine:
Micro address:

BITS VALUE

IFETCH
0200

EXPLANATION

47-45 Q#0

44 B#0

43 B#l

42-40 Q#0

39-36 H#4

35-32 H#X

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#01

19-16 H#6

15 B#l

14 X

13-12 B#XX

11-8 H#F

7-4 H#D

3-0

Resultin

H#E

g Mic

Purpose:
instruction r

Sources Ra & Rb specified by pipeline

Enable Am29203

Disable Y output

Operand Sources from RAM

Destination to RAM with parity

Don't care

No carry in

Don't care

Don't latch micro status

Don't latch macro status

Select command overlay

Instruction fetch

Don't set breakpoint

Spare/Don't care

Don't care

Ra=RF

Rb=RD

Continue

tford: 084F 3FD6 FFDE

Fetches instruction from macro
egister (IR) and register D.

memory

Comments: The Am2904 command, bits 19-16, specify the
instruction to be read from macro memory and loaded into the
instruction register (IR) . The macro memory location is
designated by bits 11-8, which is RF, the program counter
(PC) . A copy of the instruction is also loaded into
register D as indicated by bits 7-4. The Am2910 is
instructed to continue to the next sequential address.
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Micro Routine: IFETCH
Micro address: 0201

BITS VALUE EXPLANATION

47-45 Q#0

44 B#0

43 B#0

42-40 Q#0.

39-36 H#4

35-32 H#4

31-30 B#01

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#F

3-0 H#E

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand Sources from RAM

Destination to RAM

F=S plus carry in

Carry in equal to one

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare/Don't care

Don't care

Don't care

Rb=RF

Continue

Resulting Microword: 0044 7FFF FFFE

Purpose: Update PC (increment by one)

Comments: The function specified by bits 35-32 is F=S+
carry in with carry in equal to one. S is specified by bits
7-4 to be RF, the PC. The destination is RF and therefore
the PC is incremented by one. The Am2 910 is instructed to
continue "Co the next sequential micro instruction.
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Micro Routine: IFETCH
Micro address: 02 02

BITS VALUE EXPLANATION

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't set break point

Spare/don't care

Don't care

Don't care

Don't care

Jump to location mapped by opcode

Resulting Microword: FFFF FFFF FFF2

Purpose: Jump to filter microroutine "BITPRO"

Comments: The Am2910 instruction maps the opcode stored in
the IR to the appropriate microroutine location.

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#X

29-24 Q#X

23 B#X

22 B#X

21-20 B#X

19-16 H#X

15 B#l

14 X

13-12 B#X

11-8 H#X

7-4 H#X

3-0 H#E
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Mnemonic: LDCNTR

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#l Disable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#4 Destination to RAM with parity

35-32 H#X Don't care

31-30 B#XX Don't care

29-24 Q#XX Don't care

23 B#l Don't latch micro status

22 B#l Don't latch macro status

21-20 B#01 Select command overlay

19-16 H#3 Read from memory

15 B#l Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#F Ra=RF

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 084F FFD3 FFCE

Purpose: Load counter from macro memory into register C

Comments: Bits 47-45 specify that the sources Ra and Rb are
to be specified by the pipeline at bits 11-8 and 7-4
respectively. Since bits 19-16 specify the command to read
from memory, then Ra=RF specifies a macro address and since
RF is the program counter, the address specified is the next
address in the program. With Rb=RC at bits 7-4, the
destination for the value of the macro address is register
C. The Am2910 is instructed to continue to the next
sequential instruction.
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Micro Routine: Bitpro
Micro address: 0005

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand Sources from RAM

Destination to Q register with parity

F=S plus carry in

No carry in

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare/Don't care

Don't care

Don't care

Rb=RC

Continue

Resulting Microword: 0064 3FFF FFCE

Purpose: Load Q register with counter from register C

Comments: Bits 47-45 specify that the sources Ra and Rb are
to be specified by the pipeline at bits 11-8 and 7-4
respectively. Since bits 35-30 specify that the function is
to be equal to the S operand with no carry in, the value in
register C is moved to the Q register as specified by bits
39-3 6. The Am2910 is instructed to continue to the next
sequential micro instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#0

39-36 H#6

35-32 H#4

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#C

3-0 H#E
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Mnemonic: CLREG

Micro Routine: Bitpro
Micro address: 0006-0012

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand from RAM

Destination to RAM with parity

F=zero

Don't care

Don't care

Don't care

Don't care

Don ' t care

Don't care

Don't set break point

Spare/don't care

Don't care

Don't care

Specify register to be cleared

Continue

Resulting Microword: 0248 FFFF FF_E

Purpose: Clear Registers 1-B, D & E

Comments: Bits 35-32 specify that the function will be
zero. Therefore, the register indicated by bits 7-4 will be
cleared. The Am2910 is instructed to continue to the next
address.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#8

31-30 B#X

29-24 Q#X

23 B#X

22 B#X

21-20 B#X

19-16 H#X

15 B#l

14 X

13-12 B#X

11-8 H#X

7-4 H#_

3-0 H#E
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Mnemonic: LOOPBEG

Micro Routine: Bitpro
Micro address: 0013

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand sources from RAM

Destination to RAM

F=S+ carry in

Carry in = 1

Don't care

Don't latch micro

Don't latch macro

No command or shift

Don't care

Don't set breakpoint

Don't care

Don't care

Ra=RF

Rb=RF

Continue

Resulting Microword: 0044 7FFF FFFE

Purpose: Update PC in register F

Comments: Bits 35-32 specify that the function will be
equal to the value of the register F specified by bits 11-8
plus the carry in, which in this case is equal to one as
specified by bits 31-3 0. The value is then stored in
register F as indicated by bits 7-4. The Am2920 is
instructed to continue to the next address.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#0

39-36 H#4

35-32 H#4

31-30 B#01

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#F

7-4 H#F

3-0 H#E
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Micro Routine: Bitpro
Micro address: 0014

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Disable Y output

Operand Sources from RAM

Destination to RAM with parity

Don't care

Don't care

Don't care

Don't latch micro status

Don't latch macro status

Select command overlay

Read from memory

Don't set breakpoint

Spare/Don't care

Don't care

Ra=RF

Rb=RC

Continue

Resulting Microword: 084F FFD3 FFCE

Purpose: Load counter from macro memory into register C

Comments: Bits 47-45 specify that the sources Ra and Rb are
to be specified by the pipeline at bits 11-8 and 7-4
respectively. Since bits 19-16 specify the command to read
from memory, then Ra=RF specifies a macro address and since
RF is the program counter, the address specified is the next
address in the program. With Rb=RC at bits 7-4, the
destination for the value of the macro address is register
C. The Am2910 is instructed to continue to the next
sequential instruction.

47-45 Q#0

44 B#0

43 B#l

42-40 Q#0

39-36 H#4

35-32 H#X

31-30 B#XX

29-24 Q#XX

23 B#l

22 B#l

21-20 B#01

19-16 H#3

15 B#l

14 X

13-12 B#XX

11-8 H#F

7-4 H#C

3-0 H#E
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Mnemonic: STAGE1

Micro Routine: Bitpro
Micro address: 0015

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Ehable Y output

Operand Sources from RAM

Destination to RAM

F-S-R-l plus carry in

Carry in equal to one

ALU status to status registers

Latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare/Don't care

Don't care

Ra=R2

Rb=RC

Continue

Resulting Microword: 8041 507F F2CE

Purpose : R0=RC-R2

Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-30
make the function F=S-R. S=RC and R=R2 as specified by the
pipeline, bits 11-4 and the destination of the result is
specified by bits 47-45 to be the register indicated by the
instruction register. Since the Macro instruction is 01F0,
the destination register is R0. The Am2910 is instructed to
continue to the next sequential micro instruction.

47-45 Q#4

44 B#0

43 B#0

42-40 Q#0

39-36 H#4

35-32 H#l

31-30 B#01

29-24 Q#20

23 B#0

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#2

7-4 H#C

3-0 H#E
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Micro Routine: Bitpro
Micro address: 0016

BITS VALUE EXPLANATION

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don ' t care

Don't care

Don't care

Don't care

Don't set break point

Spare/don't care

This is now the

address field with

address H#250

Load address into R/C register

Resulting Microword: FFFF FFFF E50C

Purpose: Load R/C register with address H#250

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#X

29-24 Q#X

23 B#X

22 B#X

21-20 B#X

19-16 H#X

15 B#l

14 X

13-12 B#10

11-8 H#5

7-4 H#0

3-0 H#C
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Mnemonic: STAGE1

Micro Routine: Bitpro
Micro address: 0017

BITS VALUE EXPLANATION

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Use bit 29-24

Test if Micro negative

Don't latch micro status

Don't latch macro status

Command overlay

Enable true test

Don't set break point

Spare

This is the address

field with

address H#270

Conditional jump; True-pipeline address
False-R/C address

Resulting Microword: FFFF DFD9 E7 05

Purpose: Conditional jump to address H#270 if micro status
is negative (true) , jump to address H#2 50 if not negative
(false)

Comments: Bits 31-24 specify the Am2904 to test to see if
the micro status bit is negative. The Am2 910 then has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#ll

29-24 Q#1F

23 B#l

22 B#l

21-20 B#01

19-16 H#9

15 B#l

14 X

13-12 B#10

11-8 H#7

7-4 H#0

3-0 H#5
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Micro Routine: Bitpro
Micro address: 0018

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=Rl

Rb=R2

Continue

Resulting Microword: 0246 3FFF F12E

Purpose: Place value of Rl into R2

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be Rl and
bits 7-4 specify R2 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#l

7-4 H#2

3-0 H#E
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Mnemonic: STAGE1

Micro Routine: Bitpro
Micro address: 0019

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=RC

Rb=Rl

Continue

Resulting Microword: 0246 3FFF FC1E

Purpose: Place value of RC into Rl

Comments: Bits 35-3 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RC and
bits 7-4 specify Rl to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#C

7-4 H#l

3-0 H#E
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Mnemonic: STAGE2

Micro Routine: Bitpro
Micro address: 001A

BITS VALUE EXPLANATION

47-45 Q#2

44 B#0

43 B#0

42-40 Q#0

39-36 H#4

35-32 H#3

31-30 B#00

29-24 Q#20

23 B#0

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#6

7-4 H#C

3-0 H#E

Resulting Microwor

Purpose: RC=R0+R6

Ra source & dest. from pipeline, Rb fm IR

Enable Am29203

Enable Y output

Operand Sources from RAM

Destination to RAM

F=R + S plus carry in

Carry in equal to zero

ALU status to status registers

Latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare/Don't care

Don't care

Ra=R6

Rb=RC

Continue

Comments: Bits 3 5-3 specify the function to be F=S+R with
carry in equal to zero. S=R0 as specified by bits 47-45,
and R=R6 and destination = RC as specified by bits 11-4.
The Am2910 is instructed to continue to the next sequential
micro instruction.
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Micro Routine: Bitpro
Micro address: 001B

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#X Don't care

29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#X Don't care

19-16 H#X Don't care

15 B#l Don't set break point

14 X Spare/don't care

13-12 B#10 This is now the

11-8 H#l address field with

7-4 H#0 address H#210

3-0 H#C Load address into R/C register

Resulting Microword: FFFF FFFF E10C

Purpose: Load R/C register with address H#210

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.
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Mnemonic: STAGE2

Micro Routine: Bitpro
Micro address: 001C

BITS VALUE EXPLANATION

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#ll

29-24 Q#1F

23 B#l

22 B#l

21-20 B#01

19-16 H#9

15 B#l

14 X

13-12 B#10

11-8 H#3

7-4 H#0

3-0 H#5

Don't

Don't

Don't

Don't

Don't

Don't

care

care

care

care

care

care

Use bit 29-24

Test if Micro negative

Don't latch micro status

Don't latch macro status

Command overlay

Enable true test

Don't set break point

Spare

This is the address

field with

address H#2 30

Conditional jump; True-pipeline address
False-R/C address

Resulting Microword: FFFF DFD9 E305

Purpose: Conditional jump to address H#230 if micro status
is negative (true) , jump to address H#210 if not negative
(false)

Comments: Bits 31-24 specify the Am2904 to test to see if
the micro status bit is negative. The Am2 910 then has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.
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Micro Routine: Bitpro
Micro address: 001D

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don ' t care

Ra=R5

Rb=R6

Continue

Resulting Microword: 0246 3FFF F56E

Purpose: Place value of R5 into R6

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R5 and
bits 7-4 specify R6 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#5

7-4 H#6

3-0 H#E
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Mnemonic: STAGE2

Micro Routine: Bitpro
Micro address: 001E

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=R4

Rb=R5

Continue

Resulting Microword: 0246 3FFF F45E

Purpose: Place value of R4 into R5

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R4 and
bits 7-4 specify R5 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#4

7-4 H#5

3-0 H#E
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Micro Routine: Bitpro
Micro address: 001F

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don ' t care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=R3

Rb=R4

Continue

Resulting Microword: 0246 3FFF F34E

Purpose: Place value of R3 into R4

Comments: Bits 35-3 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R3 and
bits 7-4 specify R4 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#3

7-4 H#4

3-0 H#E
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Mnemonic: STAGE2

Micro Routine:
Micro address:

BITS VALUE

Bitpro
0020

EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=R0

Rb=R3

Continue

Resulting Microword: 0246 3FFF F03E

Purpose: Place value of R0 into R3

Comments: Bits 35-3 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R0 and
bits 7-4 specify R3 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22- B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#0

7-4 H#3

3-0 H#E
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Mnemonic: STAGE3

Micro Routine: Bitpro
Micro address: 0021

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand Sources from RAM

Destination to RAM

F=R + S plus carry in

Carry in equal to zero

ALU status to status registers

Latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare/Don't care

Don't care

Ra=R9

Rb=RC

Continue

Resulting Microword: 8043 107F F9CE

Purpose : R0=RC+R9

Comments: Bits 35-3 specify the function to be F=S+R with
carry in equal to zero. S=RC and R=R9 as specified by the
pipeline, bits 11-4 and the destination of the result is
specified by bits 47-45 to be the register indicated by the
instruction register. Since the Macro instruction is 01F0,
the destination register is R0. The Am2910 is instructed to
continue to the next sequential micro instruction.

47-45 Q#4

44 B#0

43 B#0

42-40 Q#0

39-36 H#4

35-32 H#3

31-30 B#01

29-24 Q#20

23 B#0

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#9

7-4 H#C

3-0 H#E
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Micro Routine: Bitpro
Micro address: 0022

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#X Don't care

29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#X Don't care

19-16 H#X Don't care

15 B#l Don't set break point

14 X Spare/don't care

13-12 B#10 This is now the

11-8 H#5 address field with

7-4 H#0 address H#250

3-0 H#C Load address into R/C register

Resulting Microword: FFFF FFFF E50C

Purpose: Load R/C register with address H#250

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next seouential address.

128



www.manaraa.com

Mnemonic: STAGE3

Micro Routine:
Micro address:

Bitpro
0023

BITS VALUE EXPLANATION

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Use bit 29-24

Test if Micro negative

Don't latch micro status

Don't latch macro status

Command overlay

Enable true test

Don't set break point

Spare

This is the address

field with

address H#270

Conditional jump; True-pipeline address
False-R/C address

Resulting Microword: FFFF DFD9 E705

Purpose: Conditional jump to address H#270 if micro status
is negative (true) , jump to address H#250 if not negative
(false)

Comments: Bits 31-24 specify the Am2904 to test to see if
the micro status bit is negative. The Am2910 then has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#ll

29-24 Q#1F

23 B#l

22 B#l

21-20 B#01

19-16 H#9

15 B#l

14 X

13-12 B#10

11-8 H#7

7-4 H#0

3-0 H#5
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Micro Routine: Bitpro
Micro address: 0024

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=R8

Rb=R9

Continue

Resulting Microword: 0246 3FFF F89E

Purpose: Place value of R8 into R9

Comments: Bits 35-3 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R8 and
bits 7-4 specify R9 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#l

7-4 H#2

3-0 H#E
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Mnemonic: STAGE3

Micro Routine: Bitpro
Micro address: 0025

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=R7

Rb=R8

Continue

Resulting Microword: 0246 3FFF F78E

Purpose: Place value of R7 into R8

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R7 and
bits 7-4 specify R8 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#7

7-4 H#8

3-0 H#E
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Micro Routine: Bitpro
Micro address: 0026

BITS VALUE EXPLANATION

Sources Ra i Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don ' t care

Don't set breakpoint

Spare

Don't care

Ra=RC

Rb=R7

Continue

Resulting Microword: 0246 3FFF FC7E

Purpose: Place value of RC into R7

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RC and
bits 7-4 specify R7 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#C

7-4 H#7

3-0 H#E
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Mnemonic: STAGE4

Micro Routine: Bitpro
Micro address: 0027

BITS VALUE EXPLANATION

Ra source & dest. from pipeline, Rb fm IR

Enable Am29203

Enable Y output

Operand Sources from RAM

Destination to RAM

F=S-R-1 plus carry in

Carry in equal to one

ALU status to status registers

Latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare/Don't care

Don't care

Ra=RA

Rb=RC

Continue

Resulting Microword: 4041 507F FACE

Purpose: RC=R0-RA

Comments: Bits 35-3 2 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-3
make the function F=S-R. S=R0 as specified by bits 47-45

,

and R=RA and destination = RC as specified by bits 11-4.
The Am2910 is instructed to continue to the next sequential
micro instruction.

47-45 Q#2

44 B#0

43 B#0

42-40 Q#0

39-36 H#4

35-32 H#l

31-30 B#01

29-24 Q#20

23 B#0

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#A

7-4 H#C

3-0 H#E
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Micro Routine: Bitpro
Micro address: 0028

BITS VALUE EXPLANATION

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#X

29-24 Q#X

23 B#X

22 B#X

21-20 B#X

19-16 H#X

15 B#l

14 X

13-12 B#10

11-8 H#l

7-4 H#0

3-0 H#C

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't set break point

Spare/don't care

This is now the

address field with

address H#210

Load address into R/C register

Resulting Microword: FFFF FFFF E10C

Purpose: Load R/C register with address H#210

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.
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Mnemonic: STAGE4

Micro Routine: Bitpro
Micro address: 0029

BITS VALUE EXPLANATION

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Use bit 29-24

Test if Micro negative

Don't latch micro status

Don't latch macro status

Command overlay

Enable true test

Don't set break point

Spare

This is the address

field with

address H#230

Conditional jump; True-pipeline address
False-R/C address

Resulting Microword: FFFF DFD9 E3 05

Purpose: Conditional jump to address H#2 3 if micro status
is negative (true) , jump to address H#210 if not negative
(false)

Comments: Bits 31-24 specify the Am2904 to test to see if
the micro status bit is negative. The Am2910 nhen has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.

47-45 Q#X

44 . B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#ll

29-24 Q#1F

23 B#l

22 B#l

21-20 B#01

19-16 H#9

15 B#l

14 X

13-12 B#10

11-8 H#3

7-4 H#0

3-0 H#5
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Micro Routine: Bitpro
Micro address: 002A

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=RO

Rb=RA

Continue

Resulting Microword: 0246 3FFF FOAE

Purpose: Place value of R0 into RA

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R0 and
bits 7-4 specify RA to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#0

7-4 H#A

3-0 H#E
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Mnemonic: STAGES

Micro Routine: Bitpro
Micro address: 002B

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand Sources from RAM

Destination to RAM

F=S-R-1 plus carry in

Carry in equal to one

ALU status to status registers

Latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare/Don't care

Don't care

Ra=RB

Rb=RC

Continue

Resulting Microword: 8041 507F FBCE

Purpose: R0=RC-RB

Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-30
make the function F=S-R. S=RC and R=RB as specified by the
pipeline, bits 11-4 and the destination of the result is
specified by bits 47-45 to be the register indicated by the
instruction register. Since the Macro instruction is 01F0,
the destination register is R0. The Am2910 is instructed to
continue to the next sequential micro instruction.

47-45 Q#4

44 B#0

43 B#0

42-40 Q#0

39-36 H#4

35-32 H#l

31-30 B#01

29-24 Q#20

23 B#0

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#B

7-4 H#C

3-0 H#E
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Micro Routine: Bitpro
Micro address: 002C

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=RC

Rb=RB

Continue

Resulting Microword: 0246 3FFF FCBE

Purpose: Place value of RC into RB

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RC and
bits 7-4 specify RB to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#C

7-4 H#B

3-0 H#E

138



www.manaraa.com

Mnemonic: STAGE

6

Micro Routine: Bitpro
Micro address: 002D

BITS VALUE EXPLANATION

Ra source & dest. from pipeline, Rb fm IR

Enable Am29203

Enable Y output

Operand Sources from RAM

Destination to RAM

F=S-R-1 plus carry in

Carry in equal to one

ALU status to status registers

Latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare/Don't care

Don't care

Ra=RE

Rb=RC

Continue

Resulting Microword: 4041 507F FECE

Purpose: RC=R0-RE

Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-3
make the function F=S-R. S=R0 as specified by bits 47-45,
and R=RE and destination = RC as specified by bits 11-4

.

The Am2910 is instructed to continue to the next sequential
micro instruction.

47-45 Q#2

44 B#0

43 B#0

42-40 Q#0

39-36 H#4

35-32 H#l

31-30 B#01

29-24 Q#20

23 B#0

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#E

7-4 H#C

3-0 H#E
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Micro Routine:
Micro address:

Bitpro
002E

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Disable 29203

Enable Y output

Operand Sources from RAM

F to Y only

F=S plus carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

Command overlay

Write to memory

Don't set break point

Spare

Don't care

Ra=RF

Rb=RC

Continue

Resulting Microword: 10C4 3FD4 FFCE

Purpose: Place result of filter stored in register C into
macro memory address pointed to by the PC

Comments: The command field of the Am2904, bits 21-16,
specifies to write to memory. It writes to the location
pointed to by Ra which in this case is RF, the PC. It
places the value from RC into this memory location. The
Am2910 is instructed to continue to the next sequential
address

.

47-45 Q#0

44 B#l

43 B#0

42-40 Q#0

39-36 H#C

35-32 H#4

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#01

19-16 H#4

15 B#l

14 X

13-12 B#XX

11-8 H#F

7-4 H#C

3-0 H#E
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Mnemonic: STAGE6

Micro Routine: Bitpro
Micro address: 002F

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=RD

Rb=RE

Continue

Resulting Microword: 0246 3FFF FDEE

Purpose: Place value of RD into RE

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RD and
bits 7-4 specify RE to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#D

7-4 H#E

3-0 H#E
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Micro Routine: Bitpro
Micro address: 003

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand From RAM

F to RAM

F=R + Carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Ra=R0

Rb=RD

Continue

Resulting Microword: 0246 3FFF FODE

Purpose: Place value of R0 into RD

Comments: Bits 35-3 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R0 and
bits 7-4 specify RD to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#6

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#0

7-4 H#D

3-0 H#E
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Mnemonic: DECCNTR

Micro Routine: Bitpro
Micro address: 0031

BITS VALUE EXPLANATION

Sources Ra & Rb from pipeline, Dest fm IR

Enable Am29203

Enabel Y output

Operand S from Q register

Destination to RAM

F=S plus carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Don't care

Don't care

Continue

Resulting Microword: 8244 3FFF FFFE

Purpose: Put counter from Q register into register

Comments: The operand S comes from the Q register as
specified by bits 42-40 and is placed in register R0 since
bits 47-45 specify the destination to be indicated by the IR
and the macro instruction in this case is 01F0. The Am2 910
is instructed to continue to the next sequential address.

47-45 Q#4

44 B#0

43 B#0

42-40 Q#2

39-36 H#4

35-32 H#4

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#X

3-0 H#E
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Micro Routine: Bitpro
Micro address: 0032

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand Sources from RAM

SPECIAL FUNCTION: Decrement by 1

ALU special function

One to be decremented (00 would deer 2)

Don't care

Don't latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Don't care

Rb=R0

Continue

Resulting Microword: 0030 7FFF FF0E

Purpose: Decrement counter by one

Comments: This instruction is an ALU special function as
designated by bits 35-32. Bits 39-36 specify the special
function to be a decrement and since bits 31-30 are 01, the
decrement is to be one. The operand is R0 as specified by
bits 7-4. The Am2910 is instructed to continue to the next
sequential address.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#0

39-36 H#3

35-32 H#0

31-30 B#01

29-24 Q#XX

23 B#l

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#0

3-0 H#E
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Mnemonic: DECCNTR

Micro Routine: Bitpro
Micro address: 0033

BITS VALUE EXPLANATION

47-45 Q#0

44 B#0

43 B#0

42-40 Q#0

39-36 H#6

35-32 H#4

31-30 B#00

29-24 Q#20

23 B#0

22 B#l

21-20 B#ll

19-16 H#F

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#0

3-0 H#E

Sources Ra & Rb specified by pipeline

Enable Am29203

Enable Y output

Operand sources from RAM

F to Q register

F=S plus carry in

Carry in equal to zero

ALU status to status registers

Latch micro status

Latch macro status

No command or shift

Dont * care

Don't set breakpoint

Spare

Don't care

Don't care

Rb=R0

Continue

Resulting Microword: 0064 107F FF0E

Purpose: Load counter back into
counter is zero

Q register and check if

Comments: Bits 39-36 specify the result destination to the
Q register. Bits 35-30 specify the function to be F=S with
carry in equal to zero and S is designated to be R0 as
specified by bits 7-4. The Am2910 is instructed to continue
to the next sequential address.
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Micro Routine: Bitpro
Micro address: 0034

BITS VALUE EXPLANATION

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Use bits 29-24

Test: Micro not zero

Don't latch micro status

Don't latch macro status

Command overlay

Allow true test

Don't set breakpoint

Spare

This is now the

address field with

address H#013

Cond. jump to pipeline address if true

Resulting Microword: FFFF D4D9 C133

Purpose: Jump back to beginning of filter to load new data
point, if counter is not zero

Comments: Bits 31-24 test the zero status bit to see if it
is not zero. If this test is true, the Am2910 jumps to the
address H#013 as specified by bits 3-0 and bits 13-4
respectively. Otherwise, the Am2910 would continue to the
next sequential address which would most likely be a branch
to the next instruction fetch.

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#ll

29-24 Q#14

23 B#l

22 B#l

21-20 B#01

19-16 H#9

15 B#l

14 X

13-12 B#00

11-8 H#l

7-4 H#3

3-0 H#3
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Micro Routine: POSSHFTC
Micro address: 0210

BITS VALUE EXPLANATION

Sources Ra & Rb from pipeline

Disable Am29203

Enable Y output

Both Sources from RAM

Destination to RAM

R=S + carry in

Carry in equal to zero

ALU status to status registers

Latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Don't care

Rb=RC

Continue

Resulting Microword: 1044 107F FFCE

Purpose: Latch incoming data to test for zero

Comments: The purpose of this instruction is merely to test
the data point in RC for zero and load the micro status
registers with the result. Bits 29-23 specify the ALU
status to be loaded and bits 7-4 designate RC to be tested.

47-45 Q#0

44 B#l

43 B#0

42-40 Q#0

39-36 H#4

35-32 H#4

31-30 B#00

29-24 Q#20

23 B#0

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#C

3-0 H#E
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Micro Routine: POSSHFTC
Micro address: 0211

BITS VALUE EXPLANATION

Don't care

Don ' t care

Don't care

Don't care

Don't care

Don't care

Use bits 29-24

Test: Micro Zero

Don't latch micro status

Don't latch macro status

Command overlay

Allow true status register test

Don't set breakpoint

Spare

This is the

address field for

address H#223

Jump to pipeline address if test true

Resulting Microword: FFFF D5D5 E233

Purpose: Test for zero, if true - go to return,
if false - continue

Comments: This Am2904 command, bits 19-16, orders a true
test of the status registers for zero. If true, the Am2910
instruction jumps to the pipeline address. If false, the
Am2910 continues to the next sequential address.

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#ll

29-24 Q#15

23 B#l

22 B#l

21-20 B#01

19-16 H#9

15 B#l

14 X

13-12 B#10

11-8 H#2

7-4 H#3

3-0 H#3
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Micro Routine: POSSSHFTC
Micro address: 0212-021A

BITS VALUE EXPLANATION

Sources Ra & Rb from pipeline

Enable Am29203

Enable Y output

RAM source for operands

F to RAM, arithmetic down shift

F=S plus carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

Shift overlay

Shift right, zero fill

Don't set breakpoint

Spare

Don't care

Don't care

Rb=RC

Continue

Resulting Microword: 0004 3FE0 FFCE

Purpose: Shift zero into MSB, shift out LSB

Comments: RC is the source and destination for the shift.
Bits 39-36 specify the shift to be downshift and bits 21-16
specify the shift to be zero fill. The Am2910 continues to
the next sequential address.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#0

39-36 H#0

35-32 H#4

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#10

19-16 H#0

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#C

3-0 H#E
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Micro Routine: POSSHFTC
Micro address: 021B-0222

BITS VALUE EXPLANATION

Sources Ra & Rb from pipeline

Enable Am29203

Enable Y output

RAM source for operands

F to RAM, arithmetic upshift

F=S plus carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

Shift overlay

Shift left, zero fill

Don't set breakpoint

Spare

Don't care

Don't care

Rb=RC

Continue

Resulting Microword: 0084 3FE0 FFCE

Purpose: Shift zero into LSB, shift out MSB

Comments: RC is the source and destination for the shift.
Bits 39-36 specify the shift to be upshift and bits 21-16
specify the shift to be zero fill. The Am2910 continues to
the next sequential address.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#0

39-36 H#8

35-32 H#4

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#10

19-16 H#0

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#C

3-0 H#E
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Micro Routine: POSSSHFTC
Micro address: 0223

BITS VALUE EXPLANATION

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Forced pass

Don't set breakpoint

Spare

Don't care

Don't care

Don't care

Conditional return

Resulting Microword: FFFF FFF9 FFFA

Purpose: Return to calling microroutine

Comments: With the forced pass on the conditional return,
the Am2910 returns to the address on the stack which is back
to the calling microroutine.

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#XX

29-24 Q#XX

23 B#X

22 B#X

21-20 B#XX

19-16 H#9

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#X

3-0 H#A
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Micro Routine: NEGSHFTC
Micro address: 0230-0238

BITS VALUE EXPLANATION

Sources Ra & Rb from pipeline

Enable Am29203

Enable Y output

RAM source for operands

F to RAM, arithmetic down shift

F=S plus carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

Shift overlay

Shift right, one fill

Don't set breakpoint

Spare

Don ' t care

Don't care

Rb=RC

Continue

Resulting Microword: 0004 3FE1 FFCE

Purpose: Shift one into MSB, shift out LSB

Comments: RC is the source and destination for the shift.
Bits 39-36 specify the shift to be downshift and bits 21-16
specify the shift to be one fill. The Am2910 continues to
the next sequential address.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#0

39-36 H#0

35-32 H#4

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#10

19-16 H#l

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#C

3-0 H#E
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Micro Routine: NEGSHFTC
Micro address: 0239

BITS VALUE EXPLANATION

Sources Ra & Rb from pipeline

Disable Am29203

Enable Y output

Both Sources from RAM

Destination to RAM

R=S + carry in

Carry in equal to zero

ALU status to status registers

Latch micro status

Don't latch macro status

No command or shift

Don't care

Don't set breakpoint

Spare

Don't care

Don't care

Rb=RC

Continue

Resulting Microword: 1044 107F FFCE

Purpose: Latch data to test for zero

Comments: The purpose of this instruction is merely to test
the data point in RC for zero and load the micro status
registers with the result. Bits 29-23 specify the ALU
status to be loaded and bits 7-4 designate RC to be tested.
The Am2910 continues to the next sequential address.

47-45 Q#0

44 B#l

43 B#0

42-40 Q#0

39-36 H#4

35-32 H#4

31-30 B#00

29-24 Q#20

23 B#0

22 B#l

21-20 B#ll

19-16 H#X

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#C

3-0 H#E
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Micro Routine: NEGSHFTC
Micro address: 023A

BITS VALUE EXPLANATION

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Use bits 29-24

Test: Micro Zero

Don't latch micro status

Don't latch macro status

Command overlay

Allow true status register test

Don't set breakpoint

Spare

This is the

address field for

address H#243

Jump to pipeline address if test true

Resulting Microword: FFFF D5D5 E433

Purpose: Test for zero, if true - go to return,
if false - continue

Comments: This Am2904 command, bits 19-16, orders a true
test of the status registers for zero. If true, the Am2910
instruction jumps to the pipeline address. If false, the
Am2910 continues to the next sequential address.

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#ll

29-24 Q#15

23 B#l

22 B#l

21-20 B#01

19-16 H#9

15 B#l

14 X

13-12 B#10

11-8 H#4

7-4 H#3

3-0 H#3
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Micro Routine: NEGSHFTC
Micro address: 023B-0242

BITS VALUE EXPLANATION

Sources Ra & Rb from pipeline

Enable Am29203

Enable Y output

RAM source for operands

F to RAM, arithmetic upshift

F=S plus carry in

Carry in equal to zero

Don't care

Don't latch micro status

Don't latch macro status

Shift overlay

Shift left, zero fill

Don't set breakpoint

Spare

Don't care

Don't care

Rb=RC

Continue

Resulting Microword: 0084 3FE0 FFCE

Purpose: Shift zero into LSB, shift out MSB

Comments: RC is the source and destination for the shift.
Bits 39-36 specify the shift to be upshift and bits 21-16
specify the shift to be zero fill. The Am2910 continues to
the next sequential address.

47-45 Q#0

44 B#0

43 B#0

42-40 Q#0

39-36 H#8

35-32 H#4

31-30 B#00

29-24 Q#XX

23 B#l

22 B#l

21-20 B#10

19-16 H#0

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#C

3-0 H#E
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Micro Routine: NEGSHFTC
Micro address: 0243

BITS VALUE EXPLANATION

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Don't care

Forced pass

Don't set breakpoint

Spare

Don't care

Don't care

Don't care

Conditional return

Resulting Microword: FFFF FFF9 FFFA

Purpose: Return to calling microroutine

Comments: With the forced pass on the conditional return,
the Am2910 returns to the address on the stack which is back
to the calling microroutine.

47-45 Q#X

44 B#X

43 B#X

42-40 Q#X

39-36 H#X

35-32 H#X

31-30 B#XX

29-24 Q#XX

23 B#X

22 B#X

21-20 B#XX

19-16 H#9

15 B#l

14 X

13-12 B#XX

11-8 H#X

7-4 H#X

3-0 H#A
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Micro Routine: POSSHFTO
Micro Address: 0250-263

This routine is identical to microroutine POSSHFTC with the
following exceptions:

Replace register C with register in all microcode

Replace address in pipeline with address H#263

Micro Routine: NEGSHFTO
Micro Routine: 0270-0283

This routine is identical to microroutine NEGSHFTC with the
following exceptions:

Replace register C with register in all microcode

Replace address in pipeline with address H#283
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APPENDIX C

FORTRAN PROGRAM OF FIR FILTER WITH CPU TIMING ROUTINE ADDED

C
C THIS PROGRAM IS A REPRESENTATION OF A 13TH ORDER BAND PASS FILTER
C

INTEGER X( 200 ) , Y( 200

)

REAL *8 T(201)
INTEGER N
HANDLE=0
PRINT 4

4 FORMAT (
' 1

' )

CALL INPUT (N,X,T)
CALL FUNCT (X,Y,N)
PRINT 4
STOP
END

C _—.-—.————
SUBROUTINE INPUT (N,X,TIME1)
REAL *8 XX(200),F,FS,TIME1(201),THETA
INTEGER X( 200

)

INTEGER N,K
N=195
F=3.58E6
FS=1. 42E7
TIME1( 1)=0.
DO 100 K=1,N

THETA=2. *3. 1415926*F*TIME1( K)
XX( K)=63. *SIN( THETA)
X(K)=INT(XX(K))
TIME1(K+1)=K/FS

100 CONTINUE
RETURN
END

C
SUBROUTINE FUNCT (X,Y,N)
REAL *8 TIMER1,TIMER2
INTEGER X( 200 ) , Y( 200 ) , Yl , Y2 , Y3 , Y4, Y5
INTEGER Xl/0/, X2/0/, Y14/0/, Y13/0/, Y12/0/, Yll/O/, Y23/0/
INTEGER Y22/0/, Y21/0/, Y3 1/0/, Y41/0/, Y52/0/, Y51/0/
INTEGER K,N
RMS=0.
CALL JCPUT(TIMERl)
DO 50 K=1,N

Y1=X(K)-X2
Yl=Yl/2
X2=X1
X1=X(K)
Y2=Y1+Y14
Y2=Y2/2
Y14=Y13
Y13=Y12
Y12=Y11
Y11=Y1
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Y3=Y2+Y23
Y3=Y3/2
Y23=Y22
Y22=Y21
Y21=Y2
Y4=Y3-Y31
Y4=Y4/2
Y31=Y3
Y5=Y4-Y41
Y41=Y4
Y(K)=Y5-Y52
Y52=Y51
Y51=Y5

IF (K. GT. 13) THEN
RMS=RMS+Y(K)*Y(K)

END IF
50 CONTINUE

CALL JCPUT(TIMER2)
T0TAL=TIMER2-TIMER1
WRITE (13,271) TIMER1,TIMER2,T0TAL

271 FORMAT (
' TIMER1 = ' ,D17. 10, ' TIMER2 = ', D17. 10, ' TOTAL = ',017.10)

RETURN
END

C
SUBROUTINE OUTPUT (X,Y,T,N)
REAL *8 T(201)
INTEGER X(200),Y(200),IHEX(200)
INTEGER I,N
DO 200 1=1,

N

IF (Y(I).LT. 0) THEN
IHEX( I)=Y( I) +256

ELSE
IHEX( I)=Y( I)

END IF
WRITE ( 13,201) I, IHEX( I ) , I , Y( I)

201 FORMAT (
' HY',13,' = ' , Z2 , 5X, '

Y' , 13
,

' = ',13)
200 CONTINUE

RETURN
END

C
SUBROUT INE JCPUT( XCPUT

)

C
C RETURN CPU TIME AS A FLOATING PT VALUE
C

PARAMETER JPI$_CPUTIME = ' 407 '

X

INTEGER*2 BUF(8)
INTEGER* 4 BUF1(4),CPUT
INTEGER SYS$GETJPI
EQUIVALENCE( BUF( 1 ) , BUF1( 1 )

)

REAL SCPUT
BUF( 1)=4
BUF(2)=JPI$_CPUTIME
BUF1(2)=%L0C(CPUT)
BUF1(3)=0
BUF(4)=0
IRET=SYS$GETJPI(

, , ,BUF, , ,

)

XCPUT=5"L0AT( CPUT)/100.
RETURN
END
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